Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,467 Bytes
6db5fd9 842f5dd 03269be 6db5fd9 bd0195a 03269be bf3db5b 6db5fd9 c9f8f37 6db5fd9 03269be 6db5fd9 842f5dd bf3db5b 842f5dd 6db5fd9 61ba7d2 6db5fd9 61ba7d2 6db5fd9 61ba7d2 15293fc 61ba7d2 bf3db5b 45ed2b6 bf3db5b 61ba7d2 65e29e4 03269be 61ba7d2 6db5fd9 61ba7d2 c9f8f37 61ba7d2 d47c0cf 6db5fd9 d47c0cf 6db5fd9 d47c0cf 6db5fd9 d47c0cf 6db5fd9 d47c0cf 6db5fd9 d47c0cf 61ba7d2 93621bb 61ba7d2 c9f8f37 61ba7d2 bf3db5b 61ba7d2 6db5fd9 61ba7d2 bc27ec5 61ba7d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
import sys
import os
import torch
from random import randint
import uuid
from tqdm.auto import tqdm
import gradio as gr
import importlib.util
from dataclasses import dataclass, field
from demo_globals import DEVICE
import spaces
from simple_knn._C import distCUDA2
@dataclass
class PipelineParams:
convert_SHs_python: bool = False
compute_cov3D_python: bool = False
debug: bool = False
@dataclass
class OptimizationParams:
iterations: int = 7000
position_lr_init: float = 0.00016
position_lr_final: float = 0.0000016
position_lr_delay_mult: float = 0.01
position_lr_max_steps: int = 30_000
feature_lr: float = 0.0025
opacity_lr: float = 0.05
scaling_lr: float = 0.005
rotation_lr: float = 0.001
percent_dense: float = 0.01
lambda_dssim: float = 0.2
densification_interval: int = 100
opacity_reset_interval: int = 3000
densify_from_iter: int = 500
densify_until_iter: int = 15_000
densify_grad_threshold: float = 0.0002
random_background: bool = False
@dataclass
class ModelParams:
sh_degree: int = 3
source_path: str = "../data/scenes/turtle/" # Default path, adjust as needed
model_path: str = ""
images: str = "images"
resolution: int = -1
white_background: bool = True
data_device: str = "cuda"
eval: bool = False
@dataclass
class TrainingArgs:
ip: str = "0.0.0.0"
port: int = 6007
debug_from: int = -1
detect_anomaly: bool = False
test_iterations: list[int] = field(default_factory=lambda: [7_000, 30_000])
save_iterations: list[int] = field(default_factory=lambda: [7_000, 30_000])
quiet: bool = False
checkpoint_iterations: list[int] = field(default_factory=lambda: [7_000, 15_000, 30_000])
start_checkpoint: str = None
@spaces.GPU(duration=20)
def train(
data_source_path, sh_degree, model_path, images, resolution, white_background, data_device, eval,
convert_SHs_python, compute_cov3D_python, debug,
iterations, position_lr_init, position_lr_final, position_lr_delay_mult,
position_lr_max_steps, feature_lr, opacity_lr, scaling_lr, rotation_lr,
percent_dense, lambda_dssim, densification_interval, opacity_reset_interval,
densify_from_iter, densify_until_iter, densify_grad_threshold, random_background
):
# Add the path to the gaussian-splatting repository
if 'GaussianRasterizer' not in globals():
gaussian_splatting_path = 'wild-gaussian-splatting/gaussian-splatting/'
sys.path.append(gaussian_splatting_path)
# Import necessary modules from the gaussian-splatting directory
from utils.loss_utils import l1_loss, ssim
# from gaussian_renderer import render
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
from utils.image_utils import psnr
from utils.graphics_utils import focal2fov, fov2focal, getProjectionMatrix
# Dynamically import the train module from the gaussian-splatting directory
train_spec = importlib.util.spec_from_file_location("gaussian_splatting_train", os.path.join(gaussian_splatting_path, "train.py"))
gaussian_splatting_train = importlib.util.module_from_spec(train_spec)
train_spec.loader.exec_module(gaussian_splatting_train)
# Import the necessary functions from the dynamically loaded module
prepare_output_and_logger = gaussian_splatting_train.prepare_output_and_logger
training_report = gaussian_splatting_train.training_report
print(data_source_path)
# Create instances of the parameter dataclasses
dataset = ModelParams(
sh_degree=sh_degree,
source_path=data_source_path,
model_path=model_path,
images=images,
resolution=resolution,
white_background=white_background,
data_device=data_device,
eval=eval
)
pipe = PipelineParams(
convert_SHs_python=convert_SHs_python,
compute_cov3D_python=compute_cov3D_python,
debug=debug
)
opt = OptimizationParams(
iterations=iterations,
position_lr_init=position_lr_init,
position_lr_final=position_lr_final,
position_lr_delay_mult=position_lr_delay_mult,
position_lr_max_steps=position_lr_max_steps,
feature_lr=feature_lr,
opacity_lr=opacity_lr,
scaling_lr=scaling_lr,
rotation_lr=rotation_lr,
percent_dense=percent_dense,
lambda_dssim=lambda_dssim,
densification_interval=densification_interval,
opacity_reset_interval=opacity_reset_interval,
densify_from_iter=densify_from_iter,
densify_until_iter=densify_until_iter,
densify_grad_threshold=densify_grad_threshold,
random_background=random_background
)
try:
import subprocess
nvcc_version = subprocess.check_output(['nvcc', '--version']).decode('utf-8')
print("NVCC Driver Version:", nvcc_version)
except Exception as e:
print("Error fetching NVCC Driver Version:", e)
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
print("local_renderer")
import torch
import math
from diff_gaussian_rasterization import GaussianRasterizationSettings, GaussianRasterizer
from scene.gaussian_model import GaussianModel
from utils.sh_utils import eval_sh
def render(viewpoint_camera, pc : GaussianModel, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, override_color = None):
"""
Render the scene.
Background tensor (bg_color) must be on GPU!
"""
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
screenspace_points = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0
try:
screenspace_points.retain_grad()
except:
pass
# Set up rasterization configuration
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
kernel_size = 0.1
subpixel_offset = torch.zeros((int(viewpoint_camera.image_height), int(viewpoint_camera.image_width), 2), dtype=torch.float32, device="cuda")
raster_settings = GaussianRasterizationSettings(
image_height=int(viewpoint_camera.image_height),
image_width=int(viewpoint_camera.image_width),
tanfovx=tanfovx,
tanfovy=tanfovy,
# kernel_size=kernel_size,
# subpixel_offset=subpixel_offset,
bg=bg_color,
scale_modifier=scaling_modifier,
viewmatrix=viewpoint_camera.world_view_transform,
projmatrix=viewpoint_camera.full_proj_transform,
sh_degree=pc.active_sh_degree,
campos=viewpoint_camera.camera_center,
prefiltered=False,
debug=pipe.debug
)
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
means3D = pc.get_xyz
means2D = screenspace_points
opacity = pc.get_opacity
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from
# scaling / rotation by the rasterizer.
scales = None
rotations = None
cov3D_precomp = None
if pipe.compute_cov3D_python:
cov3D_precomp = pc.get_covariance(scaling_modifier)
else:
scales = pc.get_scaling
rotations = pc.get_rotation
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
shs = None
colors_precomp = None
if override_color is None:
if pipe.convert_SHs_python:
shs_view = pc.get_features.transpose(1, 2).view(-1, 3, (pc.max_sh_degree+1)**2)
dir_pp = (pc.get_xyz - viewpoint_camera.camera_center.repeat(pc.get_features.shape[0], 1))
dir_pp_normalized = dir_pp/dir_pp.norm(dim=1, keepdim=True)
sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized)
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
else:
shs = pc.get_features
else:
colors_precomp = override_color
# Rasterize visible Gaussians to image, obtain their radii (on screen).
rendered_image, radii = rasterizer(
means3D = means3D,
means2D = means2D,
shs = shs,
colors_precomp = colors_precomp,
opacities = opacity,
scales = scales,
rotations = rotations,
cov3D_precomp = cov3D_precomp)
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
# They will be excluded from value updates used in the splitting criteria.
return {"render": rendered_image,
"viewspace_points": screenspace_points,
"visibility_filter" : radii > 0,
"radii": radii}
args = TrainingArgs()
testing_iterations = args.test_iterations
saving_iterations = args.save_iterations
checkpoint_iterations = args.checkpoint_iterations
debug_from = args.debug_from
pcd = torch.randn((90804, 3)).float().cuda()
print("pcd: ", pcd.shape, pcd.dtype, pcd.min(), pcd.max(), pcd.device)
print("distCUDA2: ", distCUDA2(pcd.cpu()))
print("distCUDA2: ", distCUDA2(pcd.cuda()))
dist2 = torch.clamp_min(distCUDA2(pcd.cuda()), 0.0000001)
print("dist2.shape: ", dist2.shape)
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians)
gaussians.training_setup(opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
first_iter = 0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
point_cloud_path = ""
# progress = gr.Progress() # Initialize the progress bar
# for iteration in range(first_iter, opt.iterations + 1):
# iter_start.record()
# gaussians.update_learning_rate(iteration)
# # Every 1000 its we increase the levels of SH up to a maximum degree
# if iteration % 1000 == 0:
# gaussians.oneupSHdegree()
# # Pick a random Camera
# if not viewpoint_stack:
# viewpoint_stack = scene.getTrainCameras().copy()
# viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# # Render
# if (iteration - 1) == debug_from:
# pipe.debug = True
# bg = torch.rand((3), device=DEVICE) if opt.random_background else background
# render_pkg = render(viewpoint_cam, gaussians, pipe, bg)
# image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
# # Loss
# gt_image = viewpoint_cam.original_image.cuda()
# Ll1 = l1_loss(image, gt_image)
# loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
# loss.backward()
# iter_end.record()
# with torch.no_grad():
# # Progress bar
# ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
# if iteration % 10 == 0:
# progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
# progress_bar.update(10)
# progress(iteration / opt.iterations) # Update Gradio progress bar
# if iteration == opt.iterations:
# progress_bar.close()
# # Log and save
# training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background))
# if (iteration == opt.iterations):
# point_cloud_path = os.path.join(os.path.join(dataset.model_path, "point_cloud/iteration_{}".format(iteration)), "point_cloud.ply")
# print("\n[ITER {}] Saving Gaussians to {}".format(iteration, point_cloud_path))
# scene.save(iteration)
# # Densification
# if iteration < opt.densify_until_iter:
# # Keep track of max radii in image-space for pruning
# gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
# gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
# if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
# size_threshold = 20 if iteration > opt.opacity_reset_interval else None
# gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold)
# if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
# gaussians.reset_opacity()
# # Optimizer step
# if iteration < opt.iterations:
# gaussians.optimizer.step()
# gaussians.optimizer.zero_grad(set_to_none = True)
# if (iteration == opt.iterations):
# print("\n[ITER {}] Saving Checkpoint".format(iteration))
# torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
from os import makedirs
import torchvision
import subprocess
@torch.no_grad()
def render_path(dataset : ModelParams, iteration : int, pipeline : PipelineParams, render_resize_method='crop'):
"""
render_resize_method: crop, pad
"""
# gaussians = GaussianModel(dataset.sh_degree)
# scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False)
iteration = scene.loaded_iter
bg_color = [1,1,1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
model_path = dataset.model_path
name = "render"
views = scene.getRenderCameras()
# print(len(views))
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
makedirs(render_path, exist_ok=True)
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
if render_resize_method == 'crop':
image_size = 256
elif render_resize_method == 'pad':
image_size = max(view.image_width, view.image_height)
else:
raise NotImplementedError
view.original_image = torch.zeros((3, image_size, image_size), device=view.original_image.device)
focal_length_x = fov2focal(view.FoVx, view.image_width)
focal_length_y = fov2focal(view.FoVy, view.image_height)
view.image_width = image_size
view.image_height = image_size
view.FoVx = focal2fov(focal_length_x, image_size)
view.FoVy = focal2fov(focal_length_y, image_size)
view.projection_matrix = getProjectionMatrix(znear=view.znear, zfar=view.zfar, fovX=view.FoVx, fovY=view.FoVy).transpose(0,1).cuda().float()
view.full_proj_transform = (view.world_view_transform.unsqueeze(0).bmm(view.projection_matrix.unsqueeze(0))).squeeze(0)
# print("background.device: ", background.device)
# print("view.device: ", view.original_image.device)
render_pkg = render(view, gaussians, pipeline, background)
rendering = render_pkg["render"]
torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + ".png"))
# Use ffmpeg to output video
renders_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders.mp4")
# Use ffmpeg to output video
subprocess.run(["ffmpeg", "-y",
"-framerate", "24",
"-i", os.path.join(render_path, "%05d.png"),
"-vf", "pad=ceil(iw/2)*2:ceil(ih/2)*2",
"-c:v", "libx264",
"-pix_fmt", "yuv420p",
"-crf", "23",
# "-pix_fmt", "yuv420p", # Set pixel format for compatibility
renders_path], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL
)
return renders_path
renders_path = render_path(dataset, opt.iterations, pipe, render_resize_method='crop')
torch.cuda.empty_cache()
return renders_path, point_cloud_path |