Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,236 Bytes
6db5fd9 2956ec7 6db5fd9 eb89bfc 6db5fd9 d0be95c 6db5fd9 58ec876 6db5fd9 58ec876 6db5fd9 eb89bfc 1308f6d 6db5fd9 5de3379 6db5fd9 014e82e 6db5fd9 014e82e 6db5fd9 eb89bfc 6db5fd9 011bafc 6db5fd9 2956ec7 6db5fd9 da0f211 6db5fd9 58ec876 c6a15a0 665b2f0 78792f4 eb89bfc 58ec876 eb89bfc 6db5fd9 eb89bfc b46de64 da0f211 6db5fd9 b46de64 9652ffd b46de64 9652ffd 58ec876 b46de64 6db5fd9 89e21df 6db5fd9 4162035 6db5fd9 da0f211 6db5fd9 bd0195a eb89bfc 6db5fd9 eb89bfc 6db5fd9 eb89bfc 6db5fd9 bc27ec5 eb89bfc 6db5fd9 1308f6d 6db5fd9 b46de64 6db5fd9 b46de64 58ec876 b46de64 ab602e8 b46de64 58ec876 b46de64 eb89bfc b46de64 c35f5f4 b46de64 58ec876 b46de64 eb89bfc b46de64 58ec876 eb89bfc 0618a33 eb89bfc 58ec876 0618a33 eb89bfc 58ec876 eb89bfc 0618a33 eb89bfc 58ec876 0618a33 eb89bfc 58ec876 0618a33 58ec876 eb89bfc 58ec876 0618a33 eb89bfc 58ec876 6db5fd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# sparse gradio demo functions
# --------------------------------------------------------
import sys
import spaces
import math
import gradio
import os
import numpy as np
import functools
import trimesh
import copy
from scipy.spatial.transform import Rotation
import tempfile
import shutil
import typing
from mast3r.cloud_opt.sparse_ga import sparse_global_alignment
from mast3r.cloud_opt.tsdf_optimizer import TSDFPostProcess
from mast3r.model import AsymmetricMASt3R
from dust3r.image_pairs import make_pairs
from dust3r.utils.image import load_images
from dust3r.utils.device import to_numpy
from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes
from dust3r.demo import get_args_parser as dust3r_get_args_parser
from copy import deepcopy
import matplotlib.pyplot as pl
import torch
import os.path as path
HERE_PATH = path.normpath(path.dirname(__file__)) # noqa
from demo_globals import CACHE_PATH, EXAMPLE_PATH, MODEL, DEVICE, SILENT, DATASET_DIR
class SparseGAState():
def __init__(self, cache_dir=None, outfile_name=None):
# self.sparse_ga = sparse_ga
self.cache_dir = cache_dir
self.outfile_name = outfile_name
def __del__(self):
if hasattr(self, 'cache_dir') and self.cache_dir is not None and os.path.isdir(self.cache_dir):
shutil.rmtree(self.cache_dir)
if hasattr(self, 'outfile_name') and self.outfile_name is not None and os.path.isfile(self.outfile_name):
os.remove(self.outfile_name)
def get_args_parser():
parser = dust3r_get_args_parser()
parser.add_argument('--share', action='store_true')
parser.add_argument('--gradio_delete_cache', default=None, type=int,
help='age/frequency at which gradio removes the file. If >0, matching cache is purged')
actions = parser._actions
for action in actions:
if action.dest == 'model_name':
action.choices = ["MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric"]
# change defaults
parser.prog = 'mast3r demo'
return parser
def _convert_scene_output_to_glb(outfile, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
cam_color=None, as_pointcloud=False,
transparent_cams=False, silent=False):
assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals)
pts3d = to_numpy(pts3d)
imgs = to_numpy(imgs)
focals = to_numpy(focals)
cams2world = to_numpy(cams2world)
scene = trimesh.Scene()
# full pointcloud
if as_pointcloud:
pts = np.concatenate([p[m.ravel()] for p, m in zip(pts3d, mask)]).reshape(-1, 3)
col = np.concatenate([p[m] for p, m in zip(imgs, mask)]).reshape(-1, 3)
valid_msk = np.isfinite(pts.sum(axis=1))
pct = trimesh.PointCloud(pts[valid_msk], colors=col[valid_msk])
scene.add_geometry(pct)
else:
meshes = []
for i in range(len(imgs)):
pts3d_i = pts3d[i].reshape(imgs[i].shape)
msk_i = mask[i] & np.isfinite(pts3d_i.sum(axis=-1))
meshes.append(pts3d_to_trimesh(imgs[i], pts3d_i, msk_i))
mesh = trimesh.Trimesh(**cat_meshes(meshes))
scene.add_geometry(mesh)
# add each camera
for i, pose_c2w in enumerate(cams2world):
if isinstance(cam_color, list):
camera_edge_color = cam_color[i]
else:
camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
add_scene_cam(scene, pose_c2w, camera_edge_color,
None if transparent_cams else imgs[i], focals[i],
imsize=imgs[i].shape[1::-1], screen_width=cam_size)
rot = np.eye(4)
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot))
if not silent:
print('(exporting 3D scene to', outfile, ')')
scene.export(file_obj=outfile)
return outfile
def get_3D_model_from_scene(scene, outfile, min_conf_thr=2, as_pointcloud=False, mask_sky=False,
clean_depth=False, transparent_cams=False, cam_size=0.05, TSDF_thresh=0):
"""
extract 3D_model (glb file) from a reconstructed scene
"""
# # get optimized values from scene
# scene = scenescene_state.sparse_ga
rgbimg = scene.imgs
focals = scene.get_focals().cpu()
cams2world = scene.get_im_poses().cpu()
# 3D pointcloud from depthmap, poses and intrinsics
if TSDF_thresh > 0:
tsdf = TSDFPostProcess(scene, TSDF_thresh=TSDF_thresh)
pts3d, _, confs = to_numpy(tsdf.get_dense_pts3d(clean_depth=clean_depth))
else:
pts3d, _, confs = to_numpy(scene.get_dense_pts3d(clean_depth=clean_depth))
# torch.save(confs, '/app/data/confs.pt')
msk = to_numpy([c > min_conf_thr for c in confs])
return _convert_scene_output_to_glb(outfile, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
transparent_cams=transparent_cams, cam_size=cam_size, silent=SILENT)
def save_colmap_scene(scene, save_dir, min_conf_thr=2, clean_depth=False, mask_images=True):
if 'save_pointcloud_with_normals' not in globals():
sys.path.append(os.path.join(os.path.dirname(__file__), '../wild-gaussian-splatting/gaussian-splatting'))
sys.path.append(os.path.join(os.path.dirname(__file__), '../wild-gaussian-splatting/src'))
from colmap_dataset_utils import (
inv,
init_filestructure,
save_images_masks,
save_cameras,
save_imagestxt,
save_pointcloud,
save_pointcloud_with_normals
)
cam2world = scene.get_im_poses().detach().cpu().numpy()
world2cam = inv(cam2world) #
principal_points = scene.get_principal_points().detach().cpu().numpy()
focals = scene.get_focals().detach().cpu().numpy()[..., None]
imgs = np.array(scene.imgs)
pts3d, _, confs = scene.get_dense_pts3d(clean_depth=clean_depth)
pts3d = [i.detach().reshape(imgs[0].shape) for i in pts3d] #
masks = to_numpy([c > min_conf_thr for c in to_numpy(confs)])
# move
save_path, images_path, masks_path, sparse_path = init_filestructure(save_dir)
save_images_masks(imgs, masks, images_path, masks_path, mask_images)
save_cameras(focals, principal_points, sparse_path, imgs_shape=imgs.shape)
save_imagestxt(world2cam, sparse_path)
save_pointcloud_with_normals(imgs, pts3d, masks, sparse_path)
return save_path
@spaces.GPU(duration=160)
def get_reconstructed_scene(snapshot,
min_conf_thr, matching_conf_thr,
as_pointcloud, cam_size, shared_intrinsics, clean_depth, filelist, example_name, req: gradio.Request, **kw):
"""
from a list of images, run mast3r inference, sparse global aligner.
then run get_3D_model_from_scene
"""
if example_name != '':
USER_DIR = os.path.join(CACHE_PATH, example_name)
else:
USER_DIR = os.path.join(CACHE_PATH, str(req.session_hash))
os.makedirs(USER_DIR, exist_ok=True)
image_size = 512
imgs = load_images(filelist, size=image_size, verbose=not SILENT)
if len(imgs) == 1:
imgs = [imgs[0], copy.deepcopy(imgs[0])]
imgs[1]['idx'] = 1
filelist = [filelist[0], filelist[0] + '_2']
lr1 = 0.07
niter1 = 600
lr2 = 0.014
niter2 = 300
optim_level = 'refine+depth'
mask_sky, transparent_cams = False, False
if len(filelist) < 13:
scenegraph_type = 'complete'
winsize = 1
else:
scenegraph_type = 'logwin'
half_size = math.ceil((len(filelist) - 1) / 2)
max_winsize = max(1, math.ceil(math.log(half_size, 2)))
winsize = min(5, max_winsize)
refid = 0
win_cyclic = False
TSDF_thresh = 0
scene_graph_params = [scenegraph_type]
if scenegraph_type in ["swin", "logwin"]:
scene_graph_params.append(str(winsize))
elif scenegraph_type == "oneref":
scene_graph_params.append(str(refid))
if scenegraph_type in ["swin", "logwin"] and not win_cyclic:
scene_graph_params.append('noncyclic')
scene_graph = '-'.join(scene_graph_params)
pairs = make_pairs(imgs, scene_graph=scene_graph, prefilter=None, symmetrize=True)
base_cache_dir = os.path.join(USER_DIR, 'cache')
os.makedirs(base_cache_dir, exist_ok=True)
def get_next_dir(base_dir):
run_counter = 0
while True:
run_cache_dir = os.path.join(base_dir, f"run_{run_counter}")
if not os.path.exists(run_cache_dir):
os.makedirs(run_cache_dir)
break
run_counter += 1
return run_cache_dir
cache_dir = get_next_dir(base_cache_dir)
scene = sparse_global_alignment(filelist, pairs, cache_dir,
MODEL, lr1=lr1, niter1=niter1, lr2=lr2, niter2=niter2, device=DEVICE,
opt_depth='depth' in optim_level, shared_intrinsics=shared_intrinsics,
matching_conf_thr=matching_conf_thr, **kw)
if example_name:
colmap_data_dir = os.path.join(EXAMPLE_PATH, example_name)
else:
colmap_data_dir = get_next_dir(os.path.join(USER_DIR, DATASET_DIR))
os.makedirs(colmap_data_dir, exist_ok=True)
save_colmap_scene(scene, colmap_data_dir, min_conf_thr, clean_depth)
outfile_name = os.path.join(USER_DIR, 'default_scene.glb')
outfile = get_3D_model_from_scene(scene, outfile_name, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size, TSDF_thresh)
print(f"colmap_data_dir: {colmap_data_dir}")
print(f"outfile_name: {outfile_name}")
print(f"cache_dir: {cache_dir}")
torch.cuda.empty_cache()
return outfile
def mast3r_demo_tab():
def get_context():
css = """.gradio-container {margin: 0 !important; min-width: 100%};"""
title = "MASt3R Demo"
return gradio.Blocks(css=css, title=title, delete_cache=(True, True))
with get_context() as demo:
scene = gradio.State(None)
# Title for the MASt3R demo
gradio.HTML('<h2 style="text-align: center;">MASt3R Demo</h2>')
gradio.HTML('''
<div style="padding: 10px; border-radius: 5px; margin-bottom: 10px;">
<h3>Instructions for MASt3R Demo</h3>
<ul style="text-align: left; color: #333;">
<li>Upload images. It is recommended to use no more than 7-10 images to avoid exceeding the 3-minute runtime limit for zeroGPU dynamic resources.</li>
<li>Press the "Run" button to start the process.</li>
<li>Once the stage is finished and the point cloud with cameras is visible below, switch to the 3DGS tab and follow the instructions there.</li>
</ul>
</div>
''')
inputfiles = gradio.File(file_count="multiple")
snapshot = gradio.Image(None, visible=False)
run_btn = gradio.Button("Run")
dummy_req = gradio.Request()
dummy_text = gradio.Textbox(value="", visible=False)
example_name = gradio.Textbox(value="", visible=False)
with gradio.Row():
matching_conf_thr = gradio.Slider(label="Matching Confidence Thr", value=2.,
minimum=0., maximum=30., step=0.1,
info="Before Fallback to Regr3D!")
min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.5, minimum=0.0, maximum=10, step=0.1)
cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001)
with gradio.Row():
as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud")
shared_intrinsics = gradio.Checkbox(value=False, label="Shared intrinsics",
info="Only optimize one set of intrinsics for all views")
clean_depth = gradio.Checkbox(value=False, label="Clean depth")
outmodel = gradio.Model3D()
run_btn.click(
fn=get_reconstructed_scene,
inputs=[snapshot, min_conf_thr, matching_conf_thr,
as_pointcloud, cam_size, shared_intrinsics, clean_depth, inputfiles, dummy_text],
outputs=[outmodel]
)
tower_folder = os.path.join(HERE_PATH, '../wild-gaussian-splatting/mast3r/assets/NLE_tower/')
turtle_folder = os.path.join(HERE_PATH, '../wild-gaussian-splatting/data/images/turtle_imgs/')
puma_folder = os.path.join(HERE_PATH, '../wild-gaussian-splatting/data/images/puma_imgs/')
tower_images = [os.path.join(tower_folder, file) for file in os.listdir(tower_folder) if file.endswith('.jpg') and not file.startswith('2679C386-1DC0-4443-81B5-93D7EDE4AB37-83120-000041DADB2EA917')] # my code not addpted to different size input
turtle_images = [os.path.join(turtle_folder, file) for file in os.listdir(turtle_folder) if file.endswith('.jpg')]
puma_images = [os.path.join(puma_folder, file) for file in os.listdir(puma_folder)[:12] if file.endswith('.jpg')]
examples = gradio.Examples(
examples=[
[
puma_images[0],
1.5, 0.0, True, 0.2, True, False,
puma_images,
'puma',
None,
]
],
inputs=[snapshot, min_conf_thr, matching_conf_thr, as_pointcloud, cam_size, shared_intrinsics, clean_depth, inputfiles, example_name],
fn=get_reconstructed_scene,
outputs=[outmodel],
run_on_click=True,
cache_examples='lazy',
)
examples = gradio.Examples(
examples=[
[
turtle_images[0],
1.5, 0.0, True, 0.2, True, False,
turtle_images,
'turtle',
None
]
],
inputs=[snapshot, min_conf_thr, matching_conf_thr, as_pointcloud, cam_size, shared_intrinsics, clean_depth, inputfiles, example_name],
fn=get_reconstructed_scene,
outputs=[outmodel],
run_on_click=True,
cache_examples='lazy',
)
examples = gradio.Examples(
examples=[
[
tower_images[0],
1.5, 0.0, True, 0.2, True, False,
tower_images,
'tower',
]
],
inputs=[snapshot, min_conf_thr, matching_conf_thr, as_pointcloud, cam_size, shared_intrinsics, clean_depth, inputfiles, example_name],
fn=get_reconstructed_scene,
outputs=[outmodel],
run_on_click=True,
cache_examples='lazy',
)
return demo
|