Spaces:
Runtime error
Runtime error
Commit
·
9578c5b
1
Parent(s):
d74784d
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import tensorflow as tf
|
4 |
+
import tensorflow_hub as hub
|
5 |
+
|
6 |
+
ckpt_type = '1k'
|
7 |
+
tf_hub_url = 'gs://cloud-tpu-checkpoints/efficientnet/v2/hub/efficientnetv2-s/classification'
|
8 |
+
|
9 |
+
m = hub.KerasLayer(tf_hub_url, trainable=False)
|
10 |
+
m.build([None, 224, 224, 3]) # Batch input shape.
|
11 |
+
|
12 |
+
def get_imagenet_labels(filename):
|
13 |
+
labels = []
|
14 |
+
with open(filename, 'r') as f:
|
15 |
+
for line in f:
|
16 |
+
labels.append(line.split('\t')[1][:-1]) # split and remove line break.
|
17 |
+
return labels
|
18 |
+
|
19 |
+
classes = get_imagenet_labels("imagenet1k_labels.txt")
|
20 |
+
|
21 |
+
def classify(image):
|
22 |
+
image = tf.keras.preprocessing.image.img_to_array(image)
|
23 |
+
image = (image - 128.) / 128.
|
24 |
+
logits = m(tf.expand_dims(image, 0), False)
|
25 |
+
pred = tf.keras.layers.Softmax()(logits)
|
26 |
+
idx = tf.argsort(logits[0])[::-1][0].numpy()
|
27 |
+
return classes[idx]
|
28 |
+
|
29 |
+
title = "Interactive demo: EfficientNetV2"
|
30 |
+
description = "Demo for Google's EfficientNetV2. EfficientNetV2 (accepted at ICML 2021) consists of convolutional neural networks that aim for fast training speed for relatively small-scale datasets, such as ImageNet1k."
|
31 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.00298'>EfficientNetV2: Smaller Models and Faster Training</a> | <a href='https://github.com/google/automl/tree/master/efficientnetv2'>Github Repo</a> | <a href='https://ai.googleblog.com/2021/09/toward-fast-and-accurate-neural.html'>Blog Post</a></p>"
|
32 |
+
|
33 |
+
iface = gr.Interface(fn=classify,
|
34 |
+
inputs=gr.inputs.Image(label="image"),
|
35 |
+
outputs='text',
|
36 |
+
title=title,
|
37 |
+
description=description,
|
38 |
+
enable_queue=True,
|
39 |
+
examples=[['panda.jpeg'], ["llamas.jpeg"], ["hot dog.png"]],
|
40 |
+
article=article)
|
41 |
+
|
42 |
+
iface.launch()
|