File size: 6,770 Bytes
c0c59ce
 
 
85b7a89
be7e777
 
 
85b7a89
be7e777
5bd687d
 
958b14a
c0c59ce
 
 
 
958b14a
85b7a89
 
c0c59ce
958b14a
85b7a89
 
 
 
 
 
 
 
9c66447
958b14a
be7e777
9c66447
219f5c2
 
958b14a
 
 
011359b
219f5c2
958b14a
85b7a89
c0c59ce
958b14a
 
 
c618439
7cf670a
958b14a
7cf670a
 
 
 
958b14a
 
 
 
 
7cf670a
 
 
 
 
958b14a
 
7cf670a
 
958b14a
7cf670a
 
958b14a
 
 
7cf670a
958b14a
 
9c66447
a80c9bd
85b7a89
ada01c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85b7a89
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import streamlit as st
import yfinance as yf
import pandas as pd

# Define the path to your CSV file
sp500_averages_path = 'sp500_averages.csv'

def load_sp500_averages(filepath):
    # Load the CSV without specifying an index column name
    return pd.read_csv(filepath, header=0, names=['Ratio', 'Average']).set_index('Ratio')

# Fetch financial data for a single stock
def fetch_stock_data(ticker_symbol):
    ticker = yf.Ticker(ticker_symbol)
    info = ticker.info
    
    # Calculate Book-to-Market Ratio
    pb_ratio = info.get('priceToBook')
    book_to_market_ratio = 1 / pb_ratio if pb_ratio and pb_ratio > 0 else None
    
    # Extract relevant financial information, including Book-to-Market Ratio
    financials = {
        'P/E Ratio': info.get('forwardPE'),
        'P/B Ratio': pb_ratio,
        'P/S Ratio': info.get('priceToSalesTrailing12Months'),
        'Debt to Equity Ratio': info.get('debtToEquity'),
        'Return on Equity': info.get('returnOnEquity'),
        'Book-to-Market Ratio': book_to_market_ratio,
    }
    
    return financials, info


# Update the cache decorator
@st.experimental_memo
def get_sp500_list():
    table = pd.read_html('https://en.wikipedia.org/wiki/List_of_S%26P_500_companies')
    return table[0]['Symbol'].tolist()

# Use the updated cache function and define the CSV path
sp500_list = get_sp500_list()
sp500_averages = load_sp500_averages(sp500_averages_path)

# Calculate combined scores for stocks in the S&P 500
scores_df = calculate_combined_scores_for_stocks(sp500_list, sp500_averages)
scores_df_sorted = scores_df.sort_values(by='Combined Score', ascending=False)

# Use columns for side-by-side layout
col1, col2 = st.columns([1, 3])

# First column for the sorted overview
with col1:
    st.subheader("Stock Overview")
    # Create a DataFrame for the sidebar with color-coded combined scores
    scores_df_sorted['color'] = scores_df_sorted['Combined Score'].apply(
        lambda x: 'green' if x > 0 else 'red' if x < 0 else 'grey')
    for index, row in scores_df_sorted.iterrows():
        color = row['color']
        st.markdown(f"<span style='color: {color};'>{row['Stock']}: {row['Combined Score']}</span>", unsafe_allow_html=True)

# Second column for detailed financial ratios and company information
with col2:
    st.subheader("Stock Details")
    # Dropdown to select stock for details
    ticker_symbol = st.selectbox('Select a stock for details', options=sp500_list)
    if ticker_symbol:
        with st.spinner(f'Fetching data for {ticker_symbol}...'):
            stock_data, info = fetch_stock_data(ticker_symbol)
            comparison, _ = compare_to_index(stock_data, sp500_averages)
            
            # Display company name and description
            st.write(f"**{info.get('longName')}**")
            st.write(info.get('longBusinessSummary'))
            
            # Display financial ratios in a table
            st.table(pd.DataFrame.from_dict(stock_data, orient='index', columns=['Value']))



import streamlit as st
import yfinance as yf
import pandas as pd

# Define the path to your CSV file with S&P 500 averages
sp500_averages_path = 'sp500_averages.csv'

# Define the function to load S&P 500 averages from a CSV file
@st.experimental_memo
def get_sp500_list():
    table = pd.read_html('https://en.wikipedia.org/wiki/List_of_S%26P_500_companies')
    return table[0]['Symbol'].tolist()

# Define the function to load S&P 500 averages from a CSV file
sp500_averages_path = 'sp500_averages.csv'
def load_sp500_averages(filepath):
    return pd.read_csv(filepath, header=0, names=['Ratio', 'Average']).set_index('Ratio')

# Define the function to fetch financial data for a single stock
def fetch_stock_data(ticker_symbol):
    ticker = yf.Ticker(ticker_symbol)
    info = ticker.info
    financials = {
        'P/E Ratio': info.get('forwardPE'),
        'P/B Ratio': info.get('priceToBook'),
        'P/S Ratio': info.get('priceToSalesTrailing12Months'),
        'Debt to Equity Ratio': info.get('debtToEquity'),
        'Return on Equity': info.get('returnOnEquity'),
        'Book-to-Market Ratio': 1 / info.get('priceToBook') if info.get('priceToBook') else None
    }
    return financials

# Define the function to compare stock ratios to S&P 500 averages
def compare_to_index(stock_ratios, index_averages):
    comparison = {}
    score = 0
    for ratio, value in stock_ratios.items():
        if pd.notna(value):
            average = index_averages.loc[ratio, 'Average']
            if value < average:  # For ratios where lower is better
                comparison[ratio] = 'Undervalued'
                score += 1
            elif value > average:  # For ratios where higher is not better
                comparison[ratio] = 'Overvalued'
                score -= 1
        else:
            comparison[ratio] = 'Data not available'
    return comparison, score

# Define the function to calculate combined scores for stocks
def calculate_combined_scores_for_stocks(stocks, index_averages):
    scores = []
    for ticker_symbol in stocks:
        stock_data = fetch_stock_data(ticker_symbol)
        comparison, score = compare_to_index(stock_data, index_averages)
        scores.append({'Stock': ticker_symbol, 'Combined Score': score})
    return pd.DataFrame(scores)

# User interface in Streamlit
st.title('S&P 500 Stock Comparison Tool')

# Fetch the current S&P 500 list and load the averages
sp500_list = get_sp500_list()
sp500_averages = load_sp500_averages(sp500_averages_path)

# Calculate combined scores for all S&P 500 stocks
scores_df = calculate_combined_scores_for_stocks(sp500_list, sp500_averages)
scores_df_sorted = scores_df.sort_values(by='Combined Score', ascending=False)

# Use columns for side-by-side layout
col1, col2 = st.columns([1, 3])

# First column for the sorted overview
with col1:
    st.subheader("Stock Overview")
    st.dataframe(scores_df_sorted.style.applymap(lambda x: 'background-color: green' if x > 0 
                                                 else ('background-color: red' if x < 0 else '')))

# Second column for detailed financial ratios and company information
with col2:
    st.subheader("Stock Details")
    ticker_symbol = st.selectbox('Select a stock for details', options=sp500_list)
    if ticker_symbol:
        with st.spinner(f'Fetching data for {ticker_symbol}...'):
            stock_data = fetch_stock_data(ticker_symbol)
            comparison, _ = compare_to_index(stock_data, sp500_averages)
            
            st.write(f"**{ticker_symbol} - {yf.Ticker(ticker_symbol).info['longName']}**")
            st.write("Financial Ratios compared to S&P 500 averages:")
            for ratio, status in comparison.items():
                st.write(f"{ratio}: {status}")