Update app.py
Browse files
app.py
CHANGED
@@ -4,28 +4,28 @@ from transformers import ViTFeatureExtractor, ViTModel
|
|
4 |
from PIL import Image
|
5 |
from transformers import AutoTokenizer, AutoModel
|
6 |
import torch
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
|
21 |
# Define layout with custom styles
|
22 |
layout = [
|
23 |
gr.Row([gr.File(label="Upload PDF", type="file")]),
|
24 |
-
gr.Row([gr.Button("Generate Insights", type="submit"
|
25 |
gr.Row([gr.Textbox("Placeholder for PDF insights", label="Insights", type="text")])
|
26 |
]
|
27 |
|
28 |
-
|
29 |
# Function to get image embeddings using ViT
|
30 |
def get_image_embeddings(image_path, model_name='google/vit-base-patch16-224'):
|
31 |
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
|
@@ -38,8 +38,6 @@ def get_image_embeddings(image_path, model_name='google/vit-base-patch16-224'):
|
|
38 |
return embeddings
|
39 |
|
40 |
# Function to convert PDF to images
|
41 |
-
from pdf2image import convert_from_path
|
42 |
-
|
43 |
def pdf_to_images(pdf_file, img_dir):
|
44 |
images = convert_from_path(pdf_file)
|
45 |
|
@@ -52,7 +50,6 @@ def pdf_to_images(pdf_file, img_dir):
|
|
52 |
|
53 |
print(f"Converted {len(images)} pages to images and saved in {img_dir}")
|
54 |
|
55 |
-
|
56 |
# Function to get text embeddings using a transformer model
|
57 |
def get_text_embeddings(text, model_name='bert-base-uncased'):
|
58 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -90,8 +87,9 @@ iface = gr.Interface(
|
|
90 |
inputs=gr.File(label="Upload PDF", type="file"),
|
91 |
outputs=gr.Textbox("Placeholder for PDF insights", label="Insights", type="text"),
|
92 |
title="pdf-chatbot",
|
93 |
-
description="Upload a PDF and receive insights based on its content."
|
|
|
94 |
)
|
95 |
|
96 |
if __name__ == "__main__":
|
97 |
-
iface.launch()
|
|
|
4 |
from PIL import Image
|
5 |
from transformers import AutoTokenizer, AutoModel
|
6 |
import torch
|
7 |
+
from pdf2image import convert_from_path
|
8 |
|
9 |
+
# CSS styles
|
10 |
+
css = """
|
11 |
+
.button {
|
12 |
+
padding: 10px 20px;
|
13 |
+
background: #007BFF;
|
14 |
+
color: white;
|
15 |
+
border: none;
|
16 |
+
cursor: pointer;
|
17 |
+
font-size: 16px;
|
18 |
+
margin: 10px;
|
19 |
+
}
|
20 |
+
"""
|
21 |
|
22 |
# Define layout with custom styles
|
23 |
layout = [
|
24 |
gr.Row([gr.File(label="Upload PDF", type="file")]),
|
25 |
+
gr.Row([gr.Button("Generate Insights", type="submit")]),
|
26 |
gr.Row([gr.Textbox("Placeholder for PDF insights", label="Insights", type="text")])
|
27 |
]
|
28 |
|
|
|
29 |
# Function to get image embeddings using ViT
|
30 |
def get_image_embeddings(image_path, model_name='google/vit-base-patch16-224'):
|
31 |
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
|
|
|
38 |
return embeddings
|
39 |
|
40 |
# Function to convert PDF to images
|
|
|
|
|
41 |
def pdf_to_images(pdf_file, img_dir):
|
42 |
images = convert_from_path(pdf_file)
|
43 |
|
|
|
50 |
|
51 |
print(f"Converted {len(images)} pages to images and saved in {img_dir}")
|
52 |
|
|
|
53 |
# Function to get text embeddings using a transformer model
|
54 |
def get_text_embeddings(text, model_name='bert-base-uncased'):
|
55 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
87 |
inputs=gr.File(label="Upload PDF", type="file"),
|
88 |
outputs=gr.Textbox("Placeholder for PDF insights", label="Insights", type="text"),
|
89 |
title="pdf-chatbot",
|
90 |
+
description="Upload a PDF and receive insights based on its content.",
|
91 |
+
css=css # Add the CSS styles here
|
92 |
)
|
93 |
|
94 |
if __name__ == "__main__":
|
95 |
+
iface.launch()
|