Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
def plot_usage_volume(systems, users, timelines):
|
7 |
+
# Create empty dataframe to hold usage data
|
8 |
+
data = pd.DataFrame(columns=["System", "Month", "Usage"])
|
9 |
+
|
10 |
+
# Generate usage data for each system based on typical rollout behaviors
|
11 |
+
for i, system in enumerate(systems):
|
12 |
+
# Calculate the monthly usage volume based on the estimated number of users and timeline
|
13 |
+
usage = np.concatenate([
|
14 |
+
np.linspace(0, users[i], int(timelines[i] * 0.25)),
|
15 |
+
np.linspace(users[i] * 0.5, users[i], int(timelines[i] * 0.5)),
|
16 |
+
np.linspace(users[i], users[i] * 0.75, int(timelines[i] * 0.25))
|
17 |
+
])
|
18 |
+
|
19 |
+
# Add the usage data to the dataframe
|
20 |
+
months = ["Month {}".format(j) for j in range(1, len(usage) + 1)]
|
21 |
+
system_data = pd.DataFrame({"System": [system] * len(usage), "Month": months, "Usage": usage})
|
22 |
+
data = pd.concat([data, system_data], axis=0)
|
23 |
+
|
24 |
+
# Create a larger plot with multiple subplots
|
25 |
+
fig, axs = plt.subplots(2, 1, figsize=(12, 8), sharex=True, gridspec_kw={'hspace': 0.5})
|
26 |
+
|
27 |
+
# Plot the usage volume for each system
|
28 |
+
for i, system in enumerate(systems):
|
29 |
+
system_data = data[data["System"] == system]
|
30 |
+
axs[0].plot(system_data["Month"], system_data["Usage"], label=system)
|
31 |
+
axs[0].set_ylabel("Usage Volume")
|
32 |
+
axs[0].set_title("Usage Volume for Various Systems")
|
33 |
+
|
34 |
+
# Add a line plot that aggregates the usage of all systems
|
35 |
+
aggregated_data = data.groupby("Month").sum().reset_index()
|
36 |
+
axs[1].plot(aggregated_data["Month"], aggregated_data["Usage"], label="All Systems", linewidth=3, linestyle="--")
|
37 |
+
axs[1].set_xlabel("Month")
|
38 |
+
axs[1].set_ylabel("Usage Volume")
|
39 |
+
axs[1].set_title("Aggregated Usage Volume for All Systems")
|
40 |
+
|
41 |
+
# Set xticks to only show every 3 months
|
42 |
+
axs[0].set_xticks(aggregated_data.index[::3])
|
43 |
+
axs[1].set_xticks(aggregated_data.index[::3])
|
44 |
+
|
45 |
+
# Set xticklabels to show only the months with a step of 3
|
46 |
+
axs[0].set_xticklabels(aggregated_data["Month"][::3], rotation=45, fontsize=10)
|
47 |
+
axs[1].set_xticklabels(aggregated_data["Month"][::3], rotation=45, fontsize=10)
|
48 |
+
|
49 |
+
# Add a legend to the plot
|
50 |
+
axs[0].legend()
|
51 |
+
axs[1].legend()
|
52 |
+
|
53 |
+
# Return the plot as a Gradio output
|
54 |
+
return gr.outputs.Image(plt)
|
55 |
+
|
56 |
+
# Create input components for the Gradio app
|
57 |
+
system1 = gr.inputs.Textbox(label="System 1 Name", default="System1")
|
58 |
+
users1 = gr.inputs.Slider(minimum=100, maximum=10000, step=100, default=1000, label="System 1 Estimated Users")
|
59 |
+
timeline1 = gr.inputs.Slider(minimum=6, maximum=48, step=6, default=12, label="System 1 Timeline (Months)")
|
60 |
+
|
61 |
+
# Add input components for the remaining two systems
|
62 |
+
system2 = gr.inputs.Textbox(label="System 2 Name", default="System2")
|
63 |
+
users2 = gr.inputs.Slider(minimum=100, maximum=10000, step=100, default=500, label="System 2 Estimated Users")
|
64 |
+
timeline2 = gr.inputs.Slider(minimum=6, maximum=48, step=6, default=18, label="System 2 Timeline (Months)")
|
65 |
+
|
66 |
+
system3 = gr.inputs.Textbox(label="System 3 Name", default="System3")
|
67 |
+
users3 = gr.inputs.Slider(minimum=100, maximum=10000, step=100, default=2000, label="System 3 Estimated Users")
|
68 |
+
timeline3 = gr.inputs.Slider(minimum=6, maximum=48, step=6, default=24, label="System 3 Timeline (Months)")
|
69 |
+
|
70 |
+
# Create the Gradio interface
|
71 |
+
inputs = [system1, users1, timeline1, system2, users2, timeline2, system3, users3, timeline3]
|
72 |
+
output = gr.outputs.Image("plot.png")
|
73 |
+
title = "System Rollout Usage Volume Plot"
|
74 |
+
description = "Enter the rollout parameters for three different systems and see the resulting usage volume plot."
|
75 |
+
|
76 |
+
gr.Interface(plot_usage_volume, inputs, output, title=title, description=description).launch();
|