Spaces:
Sleeping
Sleeping
| from fastapi import APIRouter | |
| from datetime import datetime | |
| from datasets import load_dataset | |
| from sklearn.metrics import accuracy_score | |
| import random | |
| import os | |
| import librosa | |
| import joblib | |
| import numpy as np | |
| import lightgbm | |
| from .utils.evaluation import AudioEvaluationRequest | |
| from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| router = APIRouter() | |
| DESCRIPTION = "Random Baseline" | |
| ROUTE = "/audio" | |
| async def evaluate_audio(request: AudioEvaluationRequest): | |
| """ | |
| Evaluate audio classification for rainforest sound detection. | |
| Current Model: Random Baseline | |
| - Makes random predictions from the label space (0-1) | |
| - Used as a baseline for comparison | |
| """ | |
| # Get space info | |
| username, space_url = get_space_info() | |
| # Define the label mapping | |
| LABEL_MAPPING = { | |
| "chainsaw": 0, | |
| "environment": 1 | |
| } | |
| # Load and prepare the dataset | |
| # Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate | |
| dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN")) | |
| # Split dataset | |
| train_test = dataset["train"] | |
| test_dataset = dataset["test"] | |
| # Start tracking emissions | |
| tracker.start() | |
| tracker.start_task("inference") | |
| #-------------------------------------------------------------------------------------------- | |
| # YOUR MODEL INFERENCE CODE HERE | |
| # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. | |
| #-------------------------------------------------------------------------------------------- | |
| def preprocess_data(row, sr): | |
| new_row = librosa.resample(row['audio']['array'], orig_sr=row['audio']['sampling_rate'], target_sr=sr) | |
| new_row = np.pad(new_row, (0, 3 * sr - len(new_row)), 'constant') | |
| new_row = librosa.feature.mfcc(y=new_row, sr=sr, n_mfcc=10) | |
| return new_row.flatten() | |
| test_list_mfcc = np.vstack([preprocess_data(row, 12000) for row in test_dataset]) | |
| model_filename = "lightgbm_10_mfcc.pkl" | |
| clf = joblib.load(model_filename) | |
| true_labels = test_dataset["label"] | |
| predictions = clf.predict(test_list_mfcc) | |
| #-------------------------------------------------------------------------------------------- | |
| # YOUR MODEL INFERENCE STOPS HERE | |
| #-------------------------------------------------------------------------------------------- | |
| # Stop tracking emissions | |
| emissions_data = tracker.stop_task() | |
| # Calculate accuracy | |
| accuracy = accuracy_score(true_labels, predictions) | |
| # Prepare results dictionary | |
| results = { | |
| "username": username, | |
| "space_url": space_url, | |
| "submission_timestamp": datetime.now().isoformat(), | |
| "model_description": DESCRIPTION, | |
| "accuracy": float(accuracy), | |
| "energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
| "emissions_gco2eq": emissions_data.emissions * 1000, | |
| "emissions_data": clean_emissions_data(emissions_data), | |
| "api_route": ROUTE, | |
| "dataset_config": { | |
| "dataset_name": request.dataset_name, | |
| "test_size": request.test_size, | |
| "test_seed": request.test_seed | |
| } | |
| } | |
| return results |