Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,25 @@
|
|
1 |
#using codes from mistralai official cookbook
|
2 |
import gradio as gr
|
3 |
-
from mistralai.
|
4 |
from mistralai.models.chat_completion import ChatMessage
|
5 |
import numpy as np
|
6 |
import PyPDF2
|
7 |
import faiss
|
8 |
import os
|
9 |
-
|
10 |
-
import asyncio
|
11 |
|
12 |
mistral_api_key = os.environ.get("API_KEY")
|
13 |
|
14 |
-
cli =
|
15 |
|
16 |
-
|
17 |
embeddings_batch_response = cli.embeddings(
|
18 |
model = "mistral-embed",
|
19 |
input = input
|
20 |
)
|
21 |
return embeddings_batch_response.data[0].embedding
|
22 |
|
23 |
-
|
24 |
chunk_size = 4096
|
25 |
chunks = []
|
26 |
for pdf in pdfs:
|
@@ -34,11 +33,10 @@ async def rag_pdf(pdfs: list, question: str) -> str:
|
|
34 |
question_embeddings = np.array([get_text_embedding(question)])
|
35 |
D, I = index.search(question_embeddings, k = 4)
|
36 |
retrieved_chunk = [chunks[i] for i in I.tolist()[0]]
|
37 |
-
print(retrieved_chunk)
|
38 |
text_retrieved = "\n\n".join(retrieved_chunk)
|
39 |
return text_retrieved
|
40 |
|
41 |
-
|
42 |
messages = []
|
43 |
pdfs = message["files"]
|
44 |
for couple in history:
|
@@ -58,23 +56,17 @@ async def ask_mistral(message: str, history: list):
|
|
58 |
pdfs_extracted.append(txt)
|
59 |
|
60 |
retrieved_text = rag_pdf(pdfs_extracted, message["text"])
|
61 |
-
print(retrieved_text)
|
62 |
messages.append(ChatMessage(role = "user", content = retrieved_text + "\n\n" + message["text"]))
|
63 |
else:
|
64 |
messages.append(ChatMessage(role = "user", content = message["text"]))
|
65 |
|
66 |
full_response = ""
|
67 |
-
|
68 |
-
async_response = cli.chat_stream(
|
69 |
-
model = "open-mistral-7b",
|
70 |
-
messages = messages,
|
71 |
-
max_tokens = 1024
|
72 |
-
)
|
73 |
-
|
74 |
-
async for chunk in async_response:
|
75 |
full_response += chunk.choices[0].delta.content
|
76 |
yield full_response
|
77 |
|
|
|
|
|
78 |
chatbot = gr.Chatbot()
|
79 |
|
80 |
with gr.Blocks(theme="soft") as demo:
|
|
|
1 |
#using codes from mistralai official cookbook
|
2 |
import gradio as gr
|
3 |
+
from mistralai.client import MistralClient
|
4 |
from mistralai.models.chat_completion import ChatMessage
|
5 |
import numpy as np
|
6 |
import PyPDF2
|
7 |
import faiss
|
8 |
import os
|
9 |
+
|
|
|
10 |
|
11 |
mistral_api_key = os.environ.get("API_KEY")
|
12 |
|
13 |
+
cli = MistralClient(api_key = mistral_api_key)
|
14 |
|
15 |
+
def get_text_embedding(input: str):
|
16 |
embeddings_batch_response = cli.embeddings(
|
17 |
model = "mistral-embed",
|
18 |
input = input
|
19 |
)
|
20 |
return embeddings_batch_response.data[0].embedding
|
21 |
|
22 |
+
def rag_pdf(pdfs: list, question: str) -> str:
|
23 |
chunk_size = 4096
|
24 |
chunks = []
|
25 |
for pdf in pdfs:
|
|
|
33 |
question_embeddings = np.array([get_text_embedding(question)])
|
34 |
D, I = index.search(question_embeddings, k = 4)
|
35 |
retrieved_chunk = [chunks[i] for i in I.tolist()[0]]
|
|
|
36 |
text_retrieved = "\n\n".join(retrieved_chunk)
|
37 |
return text_retrieved
|
38 |
|
39 |
+
def ask_mistral(message: str, history: list):
|
40 |
messages = []
|
41 |
pdfs = message["files"]
|
42 |
for couple in history:
|
|
|
56 |
pdfs_extracted.append(txt)
|
57 |
|
58 |
retrieved_text = rag_pdf(pdfs_extracted, message["text"])
|
|
|
59 |
messages.append(ChatMessage(role = "user", content = retrieved_text + "\n\n" + message["text"]))
|
60 |
else:
|
61 |
messages.append(ChatMessage(role = "user", content = message["text"]))
|
62 |
|
63 |
full_response = ""
|
64 |
+
for chunk in cli.chat_stream(model = "open-mistral-7b", messages = messages, max_tokens = 1024):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
full_response += chunk.choices[0].delta.content
|
66 |
yield full_response
|
67 |
|
68 |
+
|
69 |
+
|
70 |
chatbot = gr.Chatbot()
|
71 |
|
72 |
with gr.Blocks(theme="soft") as demo:
|