RAG / app.py
orrinin's picture
Update app.py
b2c2e74 verified
raw
history blame
3.69 kB
#using codes from mistralai official cookbook
import gradio as gr
from llama_index.llms import MistralAI
import numpy as np
import PyPDF2
import faiss
import os
from llama_index.core import SimpleDirectoryReader
from llama_index.embeddings import MistralAIEmbedding
from llama_index import ServiceContext
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.milvus import MilvusVectorStore
import textwrap
mistral_api_key = os.environ.get("API_KEY")
cli = MistralClient(api_key = mistral_api_key)
def get_text_embedding(input: str):
embeddings_batch_response = cli.embeddings(
model = "mistral-embed",
input = input
)
return embeddings_batch_response.data[0].embedding
def rag_pdf(pdfs: list, question: str) -> str:
chunk_size = 4096
chunks = []
for pdf in pdfs:
chunks += [pdf[i:i + chunk_size] for i in range(0, len(pdf), chunk_size)]
text_embeddings = np.array([get_text_embedding(chunk) for chunk in chunks])
d = text_embeddings.shape[1]
index = faiss.IndexFlatL2(d)
index.add(text_embeddings)
question_embeddings = np.array([get_text_embedding(question)])
D, I = index.search(question_embeddings, k = 4)
retrieved_chunk = [chunks[i] for i in I.tolist()[0]]
text_retrieved = "\n\n".join(retrieved_chunk)
return text_retrieved
def load_doc(path_list):
documents = SimpleDirectoryReader(input_files=path).load_data()
print("Document ID:", documents[0].doc_id)
vector_store = MilvusVectorStore(uri="./milvus_demo.db", dim=1536, overwrite=True)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
return index
def ask_mistral(message: str, history: list):
messages = []
docs = message["files"]
for couple in history:
if type(couple[0]) is tuple:
docs += couple[0][0]
else:
messages.append(ChatMessage(role= "user", content = couple[0]))
messages.append(ChatMessage(role= "assistant", content = couple[1]))
if docs:
print(docs)
index = load_doc(docs)
query_engine = index.as_query_engine()
response = query_engine.query(message["text"])
full_response = ""
for text in response.response_gen:
full_response += chunk.choices[0].delta.content
yield full_response
pdfs_extracted = []
for pdf in pdfs:
reader = PyPDF2.PdfReader(pdf)
txt = ""
for page in reader.pages:
txt += page.extract_text()
pdfs_extracted.append(txt)
retrieved_text = rag_pdf(pdfs_extracted, message["text"])
print(f'retrieved_text: {retrieved_text}')
messages.append(ChatMessage(role = "user", content = retrieved_text + "\n\n" + message["text"]))
else:
messages.append(ChatMessage(role = "user", content = message["text"]))
print(f'messages: {messages}')
full_response = ""
response = cli.chat_stream(
model = "open-mistral-7b",
messages = messages,
max_tokens = 4096)
for chunk in response:
full_response += chunk.choices[0].delta.content
yield full_response
chatbot = gr.Chatbot()
with gr.Blocks(theme="soft") as demo:
gr.ChatInterface(
fn = ask_mistral,
title = "Ask Mistral and talk to your PDFs",
multimodal = True,
chatbot=chatbot,
)
if __name__ == "__main__":
demo.queue(api_open=False).launch(show_api=False, share=False)