Spaces:
Sleeping
Sleeping
File size: 7,221 Bytes
a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e 363466f b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b3b3063 a907241 b7e679e a907241 b7e679e a907241 363466f a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e b3b3063 d231d5c b7e679e a907241 b3b3063 a907241 b7e679e a907241 b7e679e 363466f d231d5c a907241 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import gradio as gr
import pickle
import numpy as np
import glob
import tqdm
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
from peft import PeftModel
from tevatron.retriever.searcher import FaissFlatSearcher
import logging
import os
import json
import spaces
import ir_datasets
import pytrec_eval
from huggingface_hub import login
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Authenticate with HF_TOKEN
login(token=os.environ['HF_TOKEN'])
# Global variables
CUR_MODEL = "orionweller/repllama-instruct-hard-positives-v2-joint"
BASE_MODEL = "meta-llama/Llama-2-7b-hf"
tokenizer = None
model = None
retrievers = {}
corpus_lookups = {}
queries = {}
q_lookups = {}
qrels = {}
datasets = ["scifact"] # others are too large for the Space unfortunately :(
current_dataset = "scifact"
def pool(last_hidden_states, attention_mask):
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden.shape[0]
return last_hidden[torch.arange(batch_size, device=last_hidden.device), sequence_lengths]
def create_batch_dict(tokenizer, input_texts, max_length=512):
batch_dict = tokenizer(
input_texts,
max_length=max_length - 1,
return_token_type_ids=False,
return_attention_mask=False,
padding=False,
truncation=True
)
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
return tokenizer.pad(
batch_dict,
padding=True,
pad_to_multiple_of=8,
return_attention_mask=True,
return_tensors="pt",
)
def load_model():
global tokenizer, model
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
base_model_instance = AutoModel.from_pretrained(BASE_MODEL)
model = PeftModel.from_pretrained(base_model_instance, CUR_MODEL)
model = model.merge_and_unload()
model.eval()
def load_corpus_embeddings(dataset_name):
global retrievers, corpus_lookups
corpus_path = f"{dataset_name}/corpus_emb.*.pkl"
index_files = glob.glob(corpus_path)
logger.info(f'Loading {len(index_files)} files into index for {dataset_name}.')
p_reps_0, p_lookup_0 = pickle_load(index_files[0])
retrievers[dataset_name] = FaissFlatSearcher(p_reps_0)
shards = [(p_reps_0, p_lookup_0)] + [pickle_load(f) for f in index_files[1:]]
corpus_lookups[dataset_name] = []
for p_reps, p_lookup in tqdm.tqdm(shards, desc=f'Loading shards into index for {dataset_name}', total=len(index_files)):
retrievers[dataset_name].add(p_reps)
corpus_lookups[dataset_name] += p_lookup
def pickle_load(path):
with open(path, 'rb') as f:
reps, lookup = pickle.load(f)
return np.array(reps), lookup
def load_queries(dataset_name):
global queries, q_lookups, qrels
dataset = ir_datasets.load(f"beir/{dataset_name.lower()}" + ("/test" if dataset_name == "scifact" else ""))
queries[dataset_name] = []
q_lookups[dataset_name] = {}
qrels[dataset_name] = {}
for query in dataset.queries_iter():
queries[dataset_name].append(query.text)
q_lookups[dataset_name][query.query_id] = query.text
for qrel in dataset.qrels_iter():
if qrel.query_id not in qrels[dataset_name]:
qrels[dataset_name][qrel.query_id] = {}
qrels[dataset_name][qrel.query_id][qrel.doc_id] = qrel.relevance
@spaces.GPU
def encode_queries(dataset_name, postfix):
global queries, tokenizer, model
model = model.cuda()
input_texts = [f"query: {query.strip()} {postfix}".strip() for query in queries[dataset_name]]
encoded_embeds = []
batch_size = 64
for start_idx in tqdm.tqdm(range(0, len(input_texts), batch_size), desc="Encoding queries"):
batch_input_texts = input_texts[start_idx: start_idx + batch_size]
batch_dict = create_batch_dict(tokenizer, batch_input_texts)
batch_dict = {k: v.to(model.device) for k, v in batch_dict.items()}
with torch.cuda.amp.autocast():
outputs = model(**batch_dict)
embeds = pool(outputs.last_hidden_state, batch_dict['attention_mask'])
embeds = F.normalize(embeds, p=2, dim=-1)
encoded_embeds.append(embeds.cpu().numpy())
# remove model from GPU
model = model.cpu()
return np.concatenate(encoded_embeds, axis=0)
def search_queries(dataset_name, q_reps, depth=1000):
all_scores, all_indices = retrievers[dataset_name].search(q_reps, depth)
psg_indices = [[str(corpus_lookups[dataset_name][x]) for x in q_dd] for q_dd in all_indices]
return all_scores, np.array(psg_indices)
def evaluate(qrels, results, k_values):
evaluator = pytrec_eval.RelevanceEvaluator(
qrels, {f"ndcg_cut.{k}" for k in k_values} | {f"recall.{k}" for k in k_values}
)
scores = evaluator.evaluate(results)
metrics = {}
for k in k_values:
metrics[f"NDCG@{k}"] = round(np.mean([query_scores[f"ndcg_cut_{k}"] for query_scores in scores.values()]), 3)
metrics[f"Recall@{k}"] = round(np.mean([query_scores[f"recall_{k}"] for query_scores in scores.values()]), 3)
return metrics
def run_evaluation(dataset, postfix):
global current_dataset
if dataset not in retrievers or dataset not in queries:
load_corpus_embeddings(dataset)
load_queries(dataset)
current_dataset = dataset
q_reps = encode_queries(dataset, postfix)
all_scores, psg_indices = search_queries(dataset, q_reps)
results = {qid: dict(zip(doc_ids, map(float, scores)))
for qid, scores, doc_ids in zip(q_lookups[dataset].keys(), all_scores, psg_indices)}
metrics = evaluate(qrels[dataset], results, k_values=[10, 100])
return {
"NDCG@10": metrics["NDCG@10"],
"Recall@100": metrics["Recall@100"]
}
def gradio_interface(dataset, postfix):
if 'model' not in globals() or model is None:
# Load model and initial datasets
load_model()
for dataset in datasets:
print(f"Loading dataset: {dataset}")
load_corpus_embeddings(dataset)
load_queries(dataset)
return run_evaluation(dataset, postfix)
# Create Gradio interface
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Dropdown(choices=datasets, label="Dataset", value="scifact"),
gr.Textbox(label="Prompt")
],
outputs=gr.JSON(label="Evaluation Results"),
title="Promptriever Demo",
description="Select a dataset and enter a prompt to evaluate the model's performance. Note: it takes about **ten seconds** to evaluate.",
examples=[
["scifact", ""],
["scifact", "When judging the relevance of a document, focus on the pragmatics of the query and consider irrelevant any documents for which the user would have used a different query."]
]
)
# Launch the interface
iface.launch() |