File size: 7,221 Bytes
a907241
 
 
 
b7e679e
a907241
 
 
 
 
 
 
 
 
 
b7e679e
 
a907241
 
 
 
 
b7e679e
 
 
a907241
 
b7e679e
a907241
 
b7e679e
 
 
 
 
363466f
b7e679e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a907241
 
 
b7e679e
a907241
 
 
 
b7e679e
a907241
 
 
 
 
b7e679e
 
a907241
b7e679e
a907241
 
b7e679e
a907241
 
b7e679e
a907241
b7e679e
 
 
a907241
 
 
 
 
 
 
b7e679e
 
a907241
b7e679e
 
 
a907241
b7e679e
 
 
 
 
 
 
a907241
b7e679e
 
 
 
 
a907241
 
b3b3063
a907241
b7e679e
a907241
 
b7e679e
 
 
 
 
 
a907241
 
363466f
 
 
 
a907241
 
b7e679e
 
 
a907241
 
b7e679e
 
 
 
 
a907241
b7e679e
 
 
 
 
 
 
 
 
a907241
b7e679e
a907241
 
 
b7e679e
a907241
b7e679e
 
a907241
b7e679e
 
a907241
b7e679e
a907241
b7e679e
 
 
 
a907241
b7e679e
b3b3063
 
 
 
 
 
 
d231d5c
b7e679e
a907241
b3b3063
a907241
 
 
 
 
b7e679e
 
a907241
b7e679e
 
363466f
d231d5c
 
 
 
a907241
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import gradio as gr
import pickle
import numpy as np
import glob
import tqdm
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
from peft import PeftModel
from tevatron.retriever.searcher import FaissFlatSearcher
import logging
import os
import json
import spaces
import ir_datasets
import pytrec_eval
from huggingface_hub import login

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Authenticate with HF_TOKEN
login(token=os.environ['HF_TOKEN'])

# Global variables
CUR_MODEL = "orionweller/repllama-instruct-hard-positives-v2-joint"
BASE_MODEL = "meta-llama/Llama-2-7b-hf"
tokenizer = None
model = None
retrievers = {}
corpus_lookups = {}
queries = {}
q_lookups = {}
qrels = {}
datasets = ["scifact"] # others are too large for the Space unfortunately :( 
current_dataset = "scifact"

def pool(last_hidden_states, attention_mask):
    last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
    sequence_lengths = attention_mask.sum(dim=1) - 1
    batch_size = last_hidden.shape[0]
    return last_hidden[torch.arange(batch_size, device=last_hidden.device), sequence_lengths]

def create_batch_dict(tokenizer, input_texts, max_length=512):
    batch_dict = tokenizer(
        input_texts,
        max_length=max_length - 1,
        return_token_type_ids=False,
        return_attention_mask=False,
        padding=False,
        truncation=True
    )
    batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
    return tokenizer.pad(
        batch_dict,
        padding=True,
        pad_to_multiple_of=8,
        return_attention_mask=True,
        return_tensors="pt",
    )

def load_model():
    global tokenizer, model
    tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
    tokenizer.pad_token_id = tokenizer.eos_token_id
    tokenizer.pad_token = tokenizer.eos_token
    tokenizer.padding_side = "right"
    
    base_model_instance = AutoModel.from_pretrained(BASE_MODEL)
    model = PeftModel.from_pretrained(base_model_instance, CUR_MODEL)
    model = model.merge_and_unload()
    model.eval()

def load_corpus_embeddings(dataset_name):
    global retrievers, corpus_lookups
    corpus_path = f"{dataset_name}/corpus_emb.*.pkl"
    index_files = glob.glob(corpus_path)
    logger.info(f'Loading {len(index_files)} files into index for {dataset_name}.')

    p_reps_0, p_lookup_0 = pickle_load(index_files[0])
    retrievers[dataset_name] = FaissFlatSearcher(p_reps_0)

    shards = [(p_reps_0, p_lookup_0)] + [pickle_load(f) for f in index_files[1:]]
    corpus_lookups[dataset_name] = []
    
    for p_reps, p_lookup in tqdm.tqdm(shards, desc=f'Loading shards into index for {dataset_name}', total=len(index_files)):
        retrievers[dataset_name].add(p_reps)
        corpus_lookups[dataset_name] += p_lookup

def pickle_load(path):
    with open(path, 'rb') as f:
        reps, lookup = pickle.load(f)
    return np.array(reps), lookup

def load_queries(dataset_name):
    global queries, q_lookups, qrels
    dataset = ir_datasets.load(f"beir/{dataset_name.lower()}" + ("/test" if dataset_name == "scifact" else ""))
    
    queries[dataset_name] = []
    q_lookups[dataset_name] = {}
    qrels[dataset_name] = {}
    for query in dataset.queries_iter():
        queries[dataset_name].append(query.text)
        q_lookups[dataset_name][query.query_id] = query.text
    
    for qrel in dataset.qrels_iter():
        if qrel.query_id not in qrels[dataset_name]:
            qrels[dataset_name][qrel.query_id] = {}
        qrels[dataset_name][qrel.query_id][qrel.doc_id] = qrel.relevance

@spaces.GPU
def encode_queries(dataset_name, postfix):
    global queries, tokenizer, model
    model = model.cuda()
    input_texts = [f"query: {query.strip()} {postfix}".strip() for query in queries[dataset_name]]
    
    encoded_embeds = []
    batch_size = 64
    
    for start_idx in tqdm.tqdm(range(0, len(input_texts), batch_size), desc="Encoding queries"):
        batch_input_texts = input_texts[start_idx: start_idx + batch_size]
        
        batch_dict = create_batch_dict(tokenizer, batch_input_texts)
        batch_dict = {k: v.to(model.device) for k, v in batch_dict.items()}

        with torch.cuda.amp.autocast():
            outputs = model(**batch_dict)
            embeds = pool(outputs.last_hidden_state, batch_dict['attention_mask'])
            embeds = F.normalize(embeds, p=2, dim=-1)
            encoded_embeds.append(embeds.cpu().numpy())


    # remove model from GPU
    model = model.cpu()    
    return np.concatenate(encoded_embeds, axis=0)

def search_queries(dataset_name, q_reps, depth=1000):
    all_scores, all_indices = retrievers[dataset_name].search(q_reps, depth)
    psg_indices = [[str(corpus_lookups[dataset_name][x]) for x in q_dd] for q_dd in all_indices]
    return all_scores, np.array(psg_indices)

def evaluate(qrels, results, k_values):
    evaluator = pytrec_eval.RelevanceEvaluator(
        qrels, {f"ndcg_cut.{k}" for k in k_values} | {f"recall.{k}" for k in k_values}
    )
    scores = evaluator.evaluate(results)

    metrics = {}
    for k in k_values:
        metrics[f"NDCG@{k}"] = round(np.mean([query_scores[f"ndcg_cut_{k}"] for query_scores in scores.values()]), 3)
        metrics[f"Recall@{k}"] = round(np.mean([query_scores[f"recall_{k}"] for query_scores in scores.values()]), 3)

    return metrics

def run_evaluation(dataset, postfix):
    global current_dataset
    
    if dataset not in retrievers or dataset not in queries:
        load_corpus_embeddings(dataset)
        load_queries(dataset)
    
    current_dataset = dataset
    
    q_reps = encode_queries(dataset, postfix)
    all_scores, psg_indices = search_queries(dataset, q_reps)
    
    results = {qid: dict(zip(doc_ids, map(float, scores))) 
               for qid, scores, doc_ids in zip(q_lookups[dataset].keys(), all_scores, psg_indices)}
    
    metrics = evaluate(qrels[dataset], results, k_values=[10, 100])
    
    return {
        "NDCG@10": metrics["NDCG@10"],
        "Recall@100": metrics["Recall@100"]
    }

def gradio_interface(dataset, postfix):
    if 'model' not in globals() or model is None:
        # Load model and initial datasets
        load_model()
        for dataset in datasets:
            print(f"Loading dataset: {dataset}")
            load_corpus_embeddings(dataset)
            load_queries(dataset)

    return run_evaluation(dataset, postfix)



# Create Gradio interface
iface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Dropdown(choices=datasets, label="Dataset", value="scifact"),
        gr.Textbox(label="Prompt")
    ],
    outputs=gr.JSON(label="Evaluation Results"),
    title="Promptriever Demo",
    description="Select a dataset and enter a prompt to evaluate the model's performance. Note: it takes about **ten seconds** to evaluate.",
    examples=[
        ["scifact", ""],
        ["scifact", "When judging the relevance of a document, focus on the pragmatics of the query and consider irrelevant any documents for which the user would have used a different query."]
    ]
)

# Launch the interface
iface.launch()