File size: 7,771 Bytes
a907241
 
 
 
b7e679e
a907241
 
 
 
 
 
 
 
 
 
b7e679e
 
d89580e
a907241
 
 
 
 
b7e679e
 
 
a907241
9be0025
b7e679e
a907241
 
b7e679e
 
 
 
 
53b3bb9
b7e679e
 
1239c17
a667370
b7e679e
 
a667370
 
 
 
 
 
 
 
 
 
 
 
 
 
b7e679e
 
 
 
 
 
 
 
a667370
 
 
 
b7e679e
 
 
 
 
 
 
a907241
a667370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a907241
a05d59f
d89580e
 
 
 
53b3bb9
d89580e
 
53b3bb9
d89580e
 
53b3bb9
 
 
6ecf558
53b3bb9
 
 
 
 
 
 
 
 
 
a907241
53b3bb9
 
 
 
 
 
 
 
 
 
a907241
 
b7e679e
 
a907241
b7e679e
 
 
a907241
b7e679e
 
 
 
 
 
 
a907241
 
b7e679e
 
 
 
 
a907241
b7e679e
 
 
 
 
 
 
9121427
b7e679e
a667370
b7e679e
a667370
 
 
b7e679e
a907241
b7e679e
 
a907241
b7e679e
a907241
b7e679e
 
 
 
a907241
d231d5c
a667370
 
b7e679e
a907241
a667370
 
 
 
 
 
 
a907241
 
 
 
b7e679e
 
a907241
b7e679e
 
363466f
d231d5c
 
9e3d5d4
d89580e
dc7edc7
a907241
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import gradio as gr
import pickle
import numpy as np
import glob
import tqdm
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
from peft import PeftModel
from tevatron.retriever.searcher import FaissFlatSearcher
import logging
import os
import json
import spaces
import ir_datasets
import pytrec_eval
from huggingface_hub import login
import faiss

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Authenticate with HF_TOKEN
login(token=os.environ['HF_TOKEN'])

# Global variables
CUR_MODEL = "orionweller/repllama-instruct-hard-positives-v2-joint"
BASE_MODEL = "meta-llama/Llama-2-7b-hf"
tokenizer = None
model = None
retrievers = {}
corpus_lookups = {}
queries = {}
q_lookups = {}
qrels = {}
datasets = ["scifact"]
current_dataset = "scifact"


def pool(last_hidden_states, attention_mask, pool_type="last"):
    last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)

    if pool_type == "last":
        left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
        if left_padding:
            emb = last_hidden[:, -1]
        else:
            sequence_lengths = attention_mask.sum(dim=1) - 1
            batch_size = last_hidden.shape[0]
            emb = last_hidden[torch.arange(batch_size, device=last_hidden.device), sequence_lengths]
    else:
        raise ValueError(f"pool_type {pool_type} not supported")

    return emb

def create_batch_dict(tokenizer, input_texts, always_add_eos="last", max_length=512):
    batch_dict = tokenizer(
        input_texts,
        max_length=max_length - 1,
        return_token_type_ids=False,
        return_attention_mask=False,
        padding=False,
        truncation=True
    )

    if always_add_eos == "last":
        batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]

    return tokenizer.pad(
        batch_dict,
        padding=True,
        pad_to_multiple_of=8,
        return_attention_mask=True,
        return_tensors="pt",
    )

class RepLlamaModel:
    def __init__(self, model_name_or_path):
        self.base_model = "meta-llama/Llama-2-7b-hf"
        self.tokenizer = AutoTokenizer.from_pretrained(self.base_model)
        self.tokenizer.model_max_length = 2048
        self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
        self.tokenizer.pad_token = self.tokenizer.eos_token
        self.tokenizer.padding_side = "right"

        self.model = self.get_model(model_name_or_path)
        self.model.config.max_length = 2048

    def get_model(self, peft_model_name):
        base_model = AutoModel.from_pretrained(self.base_model)
        model = PeftModel.from_pretrained(base_model, peft_model_name)
        model = model.merge_and_unload()
        model.eval()
        return model

    def encode(self, texts, batch_size=32, **kwargs):
        self.model = self.model.cuda()
        all_embeddings = []
        for i in range(0, len(texts), batch_size):
            batch_texts = texts[i:i+batch_size]
            
            batch_dict = create_batch_dict(self.tokenizer, batch_texts, always_add_eos="last")
            batch_dict = {key: value.cuda() for key, value in batch_dict.items()}

            with torch.cuda.amp.autocast():
                with torch.no_grad():
                    outputs = self.model(**batch_dict)
                    embeddings = pool(outputs.last_hidden_state, batch_dict['attention_mask'], 'last')
                    embeddings = F.normalize(embeddings, p=2, dim=-1)
                    all_embeddings.append(embeddings.cpu().numpy())

        self.model = self.model.cpu()
        return np.concatenate(all_embeddings, axis=0)


def load_faiss_index(dataset_name):
    index_path = f"{dataset_name}/faiss_index.bin"
    if os.path.exists(index_path):
        logger.info(f"Loading existing FAISS index for {dataset_name} from {index_path}")
        return faiss.read_index(index_path, faiss.IO_FLAG_MMAP | faiss.IO_FLAG_READ_ONLY)
    return None

def search_queries(dataset_name, q_reps, depth=1000):
    faiss_index = load_faiss_index(dataset_name)
    if faiss_index is None:
        raise ValueError(f"No FAISS index found for dataset {dataset_name}")
    
    # Ensure q_reps is a 2D numpy array of the correct type
    q_reps = np.ascontiguousarray(q_reps.astype('float16'))
    
    # Perform the search
    all_scores, all_indices = faiss_index.search(q_reps, depth)
    
    psg_indices = [[str(corpus_lookups[dataset_name][x]) for x in q_dd] for q_dd in all_indices]
    
    # Clean up
    del faiss_index
    
    return all_scores, np.array(psg_indices)

def load_corpus_lookups(dataset_name):
    global corpus_lookups
    corpus_path = f"{dataset_name}/corpus_emb.*.pkl"
    index_files = glob.glob(corpus_path)
    
    corpus_lookups[dataset_name] = []
    for file in index_files:
        with open(file, 'rb') as f:
            _, p_lookup = pickle.load(f)
        corpus_lookups[dataset_name] += p_lookup

def load_queries(dataset_name):
    global queries, q_lookups, qrels
    dataset = ir_datasets.load(f"beir/{dataset_name.lower()}" + ("/test" if dataset_name == "scifact" else ""))
    
    queries[dataset_name] = []
    q_lookups[dataset_name] = {}
    qrels[dataset_name] = {}
    for query in dataset.queries_iter():
        queries[dataset_name].append(query.text)
        q_lookups[dataset_name][query.query_id] = query.text
    
    for qrel in dataset.qrels_iter():
        if qrel.query_id not in qrels[dataset_name]:
            qrels[dataset_name][qrel.query_id] = {}
        qrels[dataset_name][qrel.query_id][qrel.doc_id] = qrel.relevance


def evaluate(qrels, results, k_values):
    evaluator = pytrec_eval.RelevanceEvaluator(
        qrels, {f"ndcg_cut.{k}" for k in k_values} | {f"recall.{k}" for k in k_values}
    )
    scores = evaluator.evaluate(results)

    metrics = {}
    for k in k_values:
        metrics[f"NDCG@{k}"] = round(np.mean([query_scores[f"ndcg_cut_{k}"] for query_scores in scores.values()]), 3)
        metrics[f"Recall@{k}"] = round(np.mean([query_scores[f"recall_{k}"] for query_scores in scores.values()]), 3)

    return metrics

@spaces.GPU
def run_evaluation(dataset, postfix):
    global current_dataset, queries, model
    current_dataset = dataset

    input_texts = [f"query: {query.strip()} {postfix}".strip() for query in queries[current_dataset]]
    q_reps = model.encode(input_texts)
    all_scores, psg_indices = search_queries(dataset, q_reps)
    
    results = {qid: dict(zip(doc_ids, map(float, scores))) 
               for qid, scores, doc_ids in zip(q_lookups[dataset].keys(), all_scores, psg_indices)}
    
    metrics = evaluate(qrels[dataset], results, k_values=[10, 100])
    
    return {
        "NDCG@10": metrics["NDCG@10"],
        "Recall@100": metrics["Recall@100"]
    }


@spaces.GPU
def gradio_interface(dataset, postfix):
    return run_evaluation(dataset, postfix)


if model is None:
    model = RepLlamaModel(model_name_or_path=CUR_MODEL)
    load_corpus_lookups(current_dataset)
    load_queries(current_dataset)   


# Create Gradio interface
iface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Dropdown(choices=datasets, label="Dataset", value="scifact"),
        gr.Textbox(label="Prompt")
    ],
    outputs=gr.JSON(label="Evaluation Results"),
    title="Promptriever Demo",
    description="Select a dataset and enter a prompt to evaluate the model's performance. Note: it takes about **ten seconds** to evaluate.",
    examples=[
        ["scifact", ""],
        ["scifact", "Think carefully about these conditions when determining relevance"]
    ],
    cache_examples=False,
)

# Launch the interface
iface.launch()