Spaces:
Sleeping
Sleeping
File size: 7,159 Bytes
a907241 b7e679e a907241 b7e679e d89580e a907241 b7e679e a907241 b7e679e a907241 b7e679e 53b3bb9 b7e679e a907241 b7e679e a907241 53b3bb9 a907241 d89580e 53b3bb9 d89580e 53b3bb9 d89580e 53b3bb9 a907241 53b3bb9 a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b3b3063 a907241 b7e679e a907241 b7e679e a907241 363466f a907241 b7e679e a907241 b7e679e a907241 53b3bb9 a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e a907241 b7e679e b3b3063 53b3bb9 b3b3063 d231d5c b7e679e a907241 b7e679e a907241 b7e679e 363466f d231d5c 53b3bb9 d89580e a907241 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import gradio as gr
import pickle
import numpy as np
import glob
import tqdm
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
from peft import PeftModel
from tevatron.retriever.searcher import FaissFlatSearcher
import logging
import os
import json
import spaces
import ir_datasets
import pytrec_eval
from huggingface_hub import login
import faiss
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Authenticate with HF_TOKEN
login(token=os.environ['HF_TOKEN'])
# Global variables
CUR_MODEL = "orionweller/repllama-instruct-hard-positives-v2-joint"
BASE_MODEL = "meta-llama/Llama-2-7b-hf"
tokenizer = None
model = None
retrievers = {}
corpus_lookups = {}
queries = {}
q_lookups = {}
qrels = {}
datasets = ["scifact"]
current_dataset = "scifact"
def pool(last_hidden_states, attention_mask):
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden.shape[0]
return last_hidden[torch.arange(batch_size, device=last_hidden.device), sequence_lengths]
def create_batch_dict(tokenizer, input_texts, max_length=512):
batch_dict = tokenizer(
input_texts,
max_length=max_length - 1,
return_token_type_ids=False,
return_attention_mask=False,
padding=False,
truncation=True
)
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
return tokenizer.pad(
batch_dict,
padding=True,
pad_to_multiple_of=8,
return_attention_mask=True,
return_tensors="pt",
)
def load_model():
global tokenizer, model
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
base_model_instance = AutoModel.from_pretrained(BASE_MODEL, device_map="auto", torch_dtype=torch.float16)
model = PeftModel.from_pretrained(base_model_instance, CUR_MODEL)
model.eval()
def load_faiss_index(dataset_name):
index_path = f"{dataset_name}/faiss_index.bin"
if os.path.exists(index_path):
logger.info(f"Loading existing FAISS index for {dataset_name} from {index_path}")
return faiss.read_index(index_path, faiss.IO_FLAG_MMAP | faiss.IO_FLAG_READ_ONLY)
return None
def search_queries(dataset_name, q_reps, depth=1000):
faiss_index = load_faiss_index(dataset_name)
if faiss_index is None:
raise ValueError(f"No FAISS index found for dataset {dataset_name}")
# Ensure q_reps is a 2D numpy array of the correct type
q_reps = np.ascontiguousarray(q_reps.astype('float32'))
# Perform the search
all_scores, all_indices = faiss_index.search(q_reps, depth)
psg_indices = [[str(corpus_lookups[dataset_name][x]) for x in q_dd] for q_dd in all_indices]
# Clean up
del faiss_index
return all_scores, np.array(psg_indices)
def load_corpus_lookups(dataset_name):
global corpus_lookups
corpus_path = f"{dataset_name}/corpus_emb.*.pkl"
index_files = glob.glob(corpus_path)
corpus_lookups[dataset_name] = []
for file in index_files:
with open(file, 'rb') as f:
_, p_lookup = pickle.load(f)
corpus_lookups[dataset_name] += p_lookup
def load_queries(dataset_name):
global queries, q_lookups, qrels
dataset = ir_datasets.load(f"beir/{dataset_name.lower()}" + ("/test" if dataset_name == "scifact" else ""))
queries[dataset_name] = []
q_lookups[dataset_name] = {}
qrels[dataset_name] = {}
for query in dataset.queries_iter():
queries[dataset_name].append(query.text)
q_lookups[dataset_name][query.query_id] = query.text
for qrel in dataset.qrels_iter():
if qrel.query_id not in qrels[dataset_name]:
qrels[dataset_name][qrel.query_id] = {}
qrels[dataset_name][qrel.query_id][qrel.doc_id] = qrel.relevance
@spaces.GPU
def encode_queries(dataset_name, postfix):
global queries, tokenizer, model
input_texts = [f"query: {query.strip()} {postfix}".strip() for query in queries[dataset_name]]
encoded_embeds = []
batch_size = 64
for start_idx in tqdm.tqdm(range(0, len(input_texts), batch_size), desc="Encoding queries"):
batch_input_texts = input_texts[start_idx: start_idx + batch_size]
batch_dict = create_batch_dict(tokenizer, batch_input_texts)
batch_dict = {k: v.to(model.device) for k, v in batch_dict.items()}
with torch.cuda.amp.autocast():
outputs = model(**batch_dict)
embeds = pool(outputs.last_hidden_state, batch_dict['attention_mask'])
embeds = F.normalize(embeds, p=2, dim=-1)
encoded_embeds.append(embeds.cpu().numpy())
return np.concatenate(encoded_embeds, axis=0)
def evaluate(qrels, results, k_values):
evaluator = pytrec_eval.RelevanceEvaluator(
qrels, {f"ndcg_cut.{k}" for k in k_values} | {f"recall.{k}" for k in k_values}
)
scores = evaluator.evaluate(results)
metrics = {}
for k in k_values:
metrics[f"NDCG@{k}"] = round(np.mean([query_scores[f"ndcg_cut_{k}"] for query_scores in scores.values()]), 3)
metrics[f"Recall@{k}"] = round(np.mean([query_scores[f"recall_{k}"] for query_scores in scores.values()]), 3)
return metrics
def run_evaluation(dataset, postfix):
global current_dataset
if dataset not in corpus_lookups or dataset not in queries:
load_corpus_lookups(dataset)
load_queries(dataset)
current_dataset = dataset
q_reps = encode_queries(dataset, postfix)
all_scores, psg_indices = search_queries(dataset, q_reps)
results = {qid: dict(zip(doc_ids, map(float, scores)))
for qid, scores, doc_ids in zip(q_lookups[dataset].keys(), all_scores, psg_indices)}
metrics = evaluate(qrels[dataset], results, k_values=[10, 100])
return {
"NDCG@10": metrics["NDCG@10"],
"Recall@100": metrics["Recall@100"]
}
def gradio_interface(dataset, postfix):
if 'model' not in globals() or model is None:
load_model()
for dataset in datasets:
print(f"Loading dataset: {dataset}")
load_corpus_lookups(dataset)
load_queries(dataset)
return run_evaluation(dataset, postfix)
# Create Gradio interface
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Dropdown(choices=datasets, label="Dataset", value="scifact"),
gr.Textbox(label="Prompt")
],
outputs=gr.JSON(label="Evaluation Results"),
title="Promptriever Demo",
description="Select a dataset and enter a prompt to evaluate the model's performance. Note: it takes about **ten seconds** to evaluate.",
examples=[
["scifact", ""],
["scifact", "Think carefully about these conditions when determining relevance."]
],
cache_examples=True,
)
# Launch the interface
iface.launch() |