orionweller's picture
init
0df179d
raw
history blame
2.47 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Model loading and setup
model_name = "jhu-clsp/FollowIR-7B"
model = AutoModelForCausalLM.from_pretrained(model_name).cuda()
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
token_false_id = tokenizer.get_vocab()["false"]
token_true_id = tokenizer.get_vocab()["true"]
template = """<s> [INST] You are an expert Google searcher, whose job is to determine if the following document is relevant to the query (true/false). Answer using only one word, one of those two choices.
Query: {query}
Document: {text}
Relevant (only output one word, either "true" or "false"): [/INST] """
def check_relevance(query, instruction, passage):
full_query = f"{query} {instruction}"
prompt = template.format(query=full_query, text=passage)
tokens = tokenizer(
[prompt],
padding=True,
truncation=True,
return_tensors="pt",
pad_to_multiple_of=None,
)
for key in tokens:
tokens[key] = tokens[key].cuda()
batch_scores = model(**tokens).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
score = batch_scores[:, 1].exp().item()
return f"{score:.4f}"
# Gradio Interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# FollowIR Relevance Checker")
gr.Markdown("This app uses the FollowIR-7B model to determine the relevance of a passage to a given query and instruction.")
with gr.Row():
with gr.Column():
query_input = gr.Textbox(label="Query", placeholder="Enter your search query here")
instruction_input = gr.Textbox(label="Instruction", placeholder="Enter additional instructions or criteria")
passage_input = gr.Textbox(label="Passage", placeholder="Enter the passage to check for relevance", lines=5)
submit_button = gr.Button("Check Relevance")
with gr.Column():
output = gr.Textbox(label="Relevance Probability")
submit_button.click(
check_relevance,
inputs=[query_input, instruction_input, passage_input],
outputs=[output]
)
demo.launch()