Spaces:
Sleeping
Sleeping
import gradio as gr | |
import random | |
import re | |
import numpy as np | |
from datasets import load_dataset | |
from transformers import AutoTokenizer | |
# Load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
# Initialize variables to track stats | |
user_stats = { | |
"mlm": {"correct": 0, "total": 0}, | |
"ntp": {"correct": 0, "total": 0} | |
} | |
# Function to load and sample from the requested dataset | |
def load_sample_data(sample_size=100): | |
try: | |
# Try to load the requested dataset | |
dataset = load_dataset("mlfoundations/dclm-baseline-1.0-parquet", streaming=True) | |
dataset_field = "text" # Assuming the field name is "text" | |
except Exception as e: | |
print(f"Error loading requested dataset: {e}") | |
# Fallback to cc_news if there's an issue | |
dataset = load_dataset("vblagoje/cc_news", streaming=True) | |
dataset_field = "text" | |
# Sample from the dataset | |
samples = [] | |
for i, example in enumerate(dataset["train"]): | |
if i >= sample_size: | |
break | |
# Get text from the appropriate field | |
if dataset_field in example and example[dataset_field]: | |
# Clean text by removing extra whitespaces | |
text = re.sub(r'\s+', ' ', example[dataset_field]).strip() | |
# Only include longer texts to make the task meaningful | |
if len(text.split()) > 20: | |
# Truncate to two sentences | |
sentences = re.split(r'(?<=[.!?])\s+', text) | |
if len(sentences) >= 2: | |
# Take only the first two sentences | |
two_sentence_text = ' '.join(sentences[:2]) | |
samples.append(two_sentence_text) | |
return samples | |
# Load data at startup | |
data_samples = load_sample_data(100) | |
current_sample = None | |
masked_text = "" | |
original_text = "" | |
masked_indices = [] | |
masked_tokens = [] | |
current_task = "mlm" | |
def prepare_mlm_sample(text, mask_ratio=0.15): | |
"""Prepare a text sample for MLM by masking random tokens.""" | |
global masked_indices, masked_tokens, original_text | |
tokens = tokenizer.tokenize(text) | |
print(f"Text length: {len(text)} characters, {len(tokens)} tokens") | |
# Only mask whole words, not special tokens or punctuation | |
maskable_indices = [i for i, token in enumerate(tokens) | |
if not token.startswith("##") and not token.startswith("[") and not token.endswith("]") | |
and token not in [".", ",", "!", "?", ";", ":", "'", "\"", "-"]] | |
print(f"Maskable indices count: {len(maskable_indices)}") | |
print(f"Mask ratio: {mask_ratio}") | |
# Calculate how many tokens to mask based on the mask ratio | |
# No arbitrary cap - use the actual percentage | |
num_to_mask = max(1, int(len(maskable_indices) * mask_ratio)) | |
print(f"Number of tokens to mask: {num_to_mask}") | |
# Randomly select indices to mask | |
indices_to_mask = random.sample(maskable_indices, min(num_to_mask, len(maskable_indices))) | |
# Sort indices to ensure they're in order | |
indices_to_mask.sort() | |
# Create a copy of tokens to mask | |
masked_tokens_list = tokens.copy() | |
original_tokens = [] | |
# Replace selected tokens with [MASK] | |
for idx in indices_to_mask: | |
original_tokens.append(masked_tokens_list[idx]) | |
masked_tokens_list[idx] = "[MASK]" | |
# Save info for evaluation | |
masked_indices = indices_to_mask | |
masked_tokens = original_tokens | |
original_text = text | |
# Convert back to text with masks | |
masked_text = tokenizer.convert_tokens_to_string(masked_tokens_list) | |
# Print debugging info | |
print(f"Original tokens: {original_tokens}") | |
print(f"Masked indices: {indices_to_mask}") | |
print(f"Number of masks: {len(original_tokens)}") | |
return masked_text, indices_to_mask, original_tokens | |
def prepare_ntp_sample(text, cut_ratio=0.3): | |
"""Prepare a text sample for NTP by cutting off the end.""" | |
# Tokenize text to ensure reasonable cutting | |
tokens = tokenizer.tokenize(text) | |
# Print debug info | |
print(f"NTP preparation - Text length: {len(text)} characters, {len(tokens)} tokens") | |
print(f"Cut ratio: {cut_ratio}") | |
# Ensure we have enough tokens | |
if len(tokens) < 5: | |
return text, "" # Return original if too short | |
# Calculate cutoff point based on the cut ratio | |
cutoff = max(3, int(len(tokens) * (1 - cut_ratio))) | |
cutoff = min(cutoff, len(tokens) - 1) # Ensure there's at least 1 token to predict | |
print(f"Cutoff point: {cutoff} (keeping {cutoff} tokens, cutting {len(tokens) - cutoff} tokens)") | |
# Get the visible part | |
visible_tokens = tokens[:cutoff] | |
# Get the hidden part (to be predicted) | |
hidden_tokens = tokens[cutoff:] | |
# Convert back to text | |
visible_text = tokenizer.convert_tokens_to_string(visible_tokens) | |
hidden_text = tokenizer.convert_tokens_to_string(hidden_tokens) | |
print(f"Visible text length: {len(visible_text)} chars") | |
print(f"Hidden text length: {len(hidden_text)} chars") | |
return visible_text, hidden_text | |
def get_new_sample(task, mask_ratio=0.15): | |
"""Get a new text sample based on the task.""" | |
global current_sample, masked_text, masked_indices, masked_tokens, original_text, ntp_state, current_task | |
# Update current task | |
current_task = task | |
# Select a random sample | |
current_sample = random.choice(data_samples) | |
# Print debugging info | |
print(f"Getting new sample for task: {task} with mask ratio: {mask_ratio}") | |
if task == "mlm": | |
# Prepare MLM sample | |
masked_text, masked_indices, masked_tokens = prepare_mlm_sample(current_sample, mask_ratio) | |
return masked_text | |
else: # NTP | |
# Prepare NTP sample | |
visible_text, hidden_text = prepare_ntp_sample(current_sample, mask_ratio) | |
# Store original and visible for comparison | |
original_text = current_sample | |
masked_text = visible_text | |
# Reset NTP state for new iteration | |
ntp_state = { | |
"full_text": "", | |
"revealed_text": "", | |
"next_token_idx": 0, | |
"tokens": [] | |
} | |
# Prepare for token-by-token prediction | |
prepare_next_token_prediction() | |
return visible_text | |
def check_mlm_answer(user_answers): | |
"""Check user MLM answers against the masked tokens.""" | |
global user_stats | |
# Print for debugging | |
print(f"Original user input: '{user_answers}'") | |
# Handle the case where input is empty | |
if not user_answers or user_answers.isspace(): | |
return "Please provide your answers. No input was detected." | |
# Basic cleanup - trim and lowercase | |
user_answers = user_answers.strip().lower() | |
print(f"After basic cleanup: '{user_answers}'") | |
# Explicit comma-based splitting with protection for empty entries | |
if ',' in user_answers: | |
# Split by commas and strip each item | |
user_tokens = [token.strip() for token in user_answers.split(',')] | |
# Filter out empty tokens | |
user_tokens = [token for token in user_tokens if token] | |
else: | |
# If no commas, split by whitespace | |
user_tokens = [token for token in user_answers.split() if token] | |
print(f"Parsed tokens: {user_tokens}, count: {len(user_tokens)}") | |
print(f"Expected tokens: {masked_tokens}, count: {len(masked_tokens)}") | |
# Ensure we have the same number of answers as masks | |
if len(user_tokens) != len(masked_tokens): | |
return f"Please provide exactly {len(masked_tokens)} answers (one for each [MASK]). You provided {len(user_tokens)}.\n\nFormat example: word1, word2, word3" | |
# Compare each answer | |
correct = 0 | |
feedback = [] | |
for i, (user_token, orig_token) in enumerate(zip(user_tokens, masked_tokens)): | |
orig_token = orig_token.lower() | |
# Remove ## from subword tokens for comparison | |
if orig_token.startswith("##"): | |
orig_token = orig_token[2:] | |
if user_token == orig_token: | |
correct += 1 | |
feedback.append(f"✓ Token {i+1}: '{user_token}' is correct!") | |
else: | |
feedback.append(f"✗ Token {i+1}: '{user_token}' should be '{orig_token}'") | |
# Update stats | |
user_stats["mlm"]["correct"] += correct | |
user_stats["mlm"]["total"] += len(masked_tokens) | |
# Calculate accuracy | |
accuracy = correct / len(masked_tokens) if masked_tokens else 0 | |
accuracy_percentage = accuracy * 100 | |
# Add overall accuracy to feedback | |
feedback.insert(0, f"Your accuracy: {correct}/{len(masked_tokens)} ({accuracy_percentage:.1f}%)") | |
# Calculate overall stats | |
overall_accuracy = user_stats["mlm"]["correct"] / user_stats["mlm"]["total"] if user_stats["mlm"]["total"] > 0 else 0 | |
feedback.append(f"\nOverall MLM Accuracy: {user_stats['mlm']['correct']}/{user_stats['mlm']['total']} ({overall_accuracy*100:.1f}%)") | |
return "\n".join(feedback) | |
# Variable to store NTP state | |
ntp_state = { | |
"full_text": "", | |
"revealed_text": "", | |
"next_token_idx": 0, | |
"tokens": [] | |
} | |
def prepare_next_token_prediction(): | |
"""Prepare for the next token prediction.""" | |
global ntp_state, masked_text, original_text | |
# Get the hidden part | |
full_hidden = original_text[len(masked_text):].strip() | |
# Tokenize the hidden part | |
hidden_tokens = tokenizer.tokenize(full_hidden) | |
# Print debug info | |
print(f"NTP State setup:") | |
print(f" Full text: '{original_text}'") | |
print(f" Visible text: '{masked_text}'") | |
print(f" Hidden text: '{full_hidden}'") | |
print(f" Hidden tokens: {hidden_tokens}") | |
# Set up the NTP state | |
ntp_state["tokens"] = hidden_tokens | |
ntp_state["full_text"] = full_hidden | |
ntp_state["revealed_text"] = "" | |
ntp_state["next_token_idx"] = 0 | |
# Make sure we have tokens to predict | |
if not ntp_state["tokens"]: | |
print("Warning: No tokens to predict, will try another sample") | |
# If we don't have tokens, get a new sample with a higher cut ratio | |
new_text = get_new_sample("ntp", 0.4) # Use higher cut ratio | |
prepare_next_token_prediction() | |
def check_ntp_answer(user_continuation): | |
"""Check user NTP answer for the next token only.""" | |
global user_stats, ntp_state, masked_text | |
# If we haven't set up NTP state yet, do it now | |
if not ntp_state["tokens"]: | |
prepare_next_token_prediction() | |
# Print debug info | |
print(f"Current NTP state:") | |
print(f" Next token index: {ntp_state['next_token_idx']}") | |
print(f" Total tokens: {len(ntp_state['tokens'])}") | |
print(f" User input: '{user_continuation}'") | |
# No more tokens to predict | |
if ntp_state["next_token_idx"] >= len(ntp_state["tokens"]): | |
# Reset for next round | |
return "You've completed this prediction! Click 'New Sample' for another." | |
# Get the next token to predict | |
next_token = ntp_state["tokens"][ntp_state["next_token_idx"]] | |
print(f" Expected next token: '{next_token}'") | |
# Get user's prediction | |
user_text = user_continuation.strip() | |
# Tokenize user's prediction to get their first token | |
user_tokens = tokenizer.tokenize(user_text) | |
user_token = user_tokens[0].lower() if user_tokens else "" | |
print(f" User's tokenized input: {user_tokens}") | |
# Clean up tokens for comparison | |
next_token_clean = next_token.lower() | |
if next_token_clean.startswith("##"): | |
next_token_clean = next_token_clean[2:] | |
if user_token.startswith("##"): | |
user_token = user_token[2:] | |
# Check if correct | |
is_correct = (user_token == next_token_clean) | |
print(f" Comparison: '{user_token}' vs '{next_token_clean}' -> {'Correct' if is_correct else 'Incorrect'}") | |
# Update stats | |
if is_correct: | |
user_stats["ntp"]["correct"] += 1 | |
user_stats["ntp"]["total"] += 1 | |
# Reveal this token and prepare for next | |
ntp_state["revealed_text"] += tokenizer.convert_tokens_to_string([next_token]) | |
ntp_state["next_token_idx"] += 1 | |
# Calculate overall accuracy | |
overall_accuracy = user_stats["ntp"]["correct"] / user_stats["ntp"]["total"] if user_stats["ntp"]["total"] > 0 else 0 | |
feedback = [] | |
if is_correct: | |
feedback.append(f"✓ Correct! The next token was indeed '{next_token_clean}'") | |
else: | |
feedback.append(f"✗ Not quite. The actual next token was '{next_token_clean}'") | |
# Show progress | |
feedback.append(f"\nText so far: {masked_text}{ntp_state['revealed_text']}") | |
# If there are more tokens, prompt for next | |
if ntp_state["next_token_idx"] < len(ntp_state["tokens"]): | |
feedback.append(f"\nPredict the next token...") | |
else: | |
feedback.append(f"\nPrediction complete! Full text was:\n{original_text}") | |
# Show overall stats | |
feedback.append(f"\nOverall NTP Accuracy: {user_stats['ntp']['correct']}/{user_stats['ntp']['total']} ({overall_accuracy*100:.1f}%)") | |
return "\n".join(feedback) | |
def switch_task(task): | |
"""Switch between MLM and NTP tasks.""" | |
global current_task | |
current_task = task | |
return gr.update(visible=(task == "mlm")), gr.update(visible=(task == "ntp")) | |
def generate_new_sample(mask_ratio): | |
"""Generate a new sample based on current task.""" | |
ratio = float(mask_ratio) / 100.0 # Convert percentage to ratio | |
sample = get_new_sample(current_task, ratio) | |
return sample, "" | |
def check_answer(user_input, task): | |
"""Check user answer based on current task.""" | |
# Make the current task visible in UI and more prominent | |
if task == "mlm": | |
return check_mlm_answer(user_input) | |
else: # NTP | |
return check_ntp_answer(user_input) | |
def reset_stats(): | |
"""Reset user statistics.""" | |
global user_stats | |
user_stats = { | |
"mlm": {"correct": 0, "total": 0}, | |
"ntp": {"correct": 0, "total": 0} | |
} | |
return "Statistics have been reset." | |
# Set up Gradio interface | |
with gr.Blocks(title="MLM and NTP Testing") as demo: | |
gr.Markdown("# Language Model Testing: MLM vs NTP") | |
gr.Markdown("Test your skills at Masked Language Modeling (MLM) and Next Token Prediction (NTP)") | |
with gr.Row(): | |
task_radio = gr.Radio( | |
["mlm", "ntp"], | |
label="Task Type", | |
value="mlm", | |
info="MLM: Guess the masked words | NTP: Predict what comes next" | |
) | |
mask_ratio = gr.Slider( | |
minimum=5, | |
maximum=50, | |
value=15, | |
step=5, | |
label="Mask/Cut Ratio (%)", | |
info="Percentage of tokens to mask (MLM) or text to hide (NTP)" | |
) | |
# Count the visible [MASK] tokens for user reference | |
mask_count = gr.Markdown("**Number of [MASK] tokens to guess: 0**") | |
sample_text = gr.Textbox( | |
label="Text Sample", | |
placeholder="Click 'New Sample' to get started", | |
value=get_new_sample("mlm", 0.15), | |
lines=10, | |
interactive=False | |
) | |
with gr.Row(): | |
new_button = gr.Button("New Sample", variant="primary") | |
reset_button = gr.Button("Reset Stats") | |
# Consolidated input area - only one visible at a time | |
input_area = gr.Group() | |
with input_area: | |
# Task-specific input instructions | |
mlm_instructions = gr.Markdown(""" | |
### MLM Instructions | |
1. For each [MASK] token, provide your guess for the original word. | |
2. Separate your answers with commas. | |
3. Make sure you provide exactly the same number of answers as [MASK] tokens. | |
**Example format:** `word1, word2, word3` or `word1,word2,word3` | |
""", visible=True) | |
ntp_instructions = gr.Markdown(""" | |
### NTP Instructions | |
Predict the next word or token that would follow the text. | |
Type a single word or token for each prediction. | |
""", visible=False) | |
# Unified input box | |
answer_input = gr.Textbox( | |
label="Your answer", | |
placeholder="For MLM: word1, word2, word3 | For NTP: single word", | |
lines=1 | |
) | |
with gr.Row(): | |
check_button = gr.Button("Check Answer", variant="primary") | |
result = gr.Textbox(label="Result", lines=6) | |
# Function to switch task type | |
def switch_task_unified(task): | |
if task == "mlm": | |
mask_text = f"**Number of [MASK] tokens to guess: {len(masked_tokens)}**" | |
return ( | |
gr.update(visible=True), # mlm_instructions | |
gr.update(visible=False), # ntp_instructions | |
gr.update(placeholder="comma-separated answers (e.g., word1, word2, word3)"), | |
mask_text | |
) | |
else: # ntp | |
return ( | |
gr.update(visible=False), # mlm_instructions | |
gr.update(visible=True), # ntp_instructions | |
gr.update(placeholder="Type the next word/token you predict"), | |
"**Next Token Prediction mode - guess one token at a time**" | |
) | |
# Set up event handlers | |
task_radio.change( | |
switch_task_unified, | |
inputs=[task_radio], | |
outputs=[mlm_instructions, ntp_instructions, answer_input, mask_count] | |
) | |
# Update the sample text when mask ratio changes (without clicking new sample) | |
def update_on_ratio_change(mask_ratio_pct, task): | |
print(f"Ratio changed to {mask_ratio_pct}%") | |
# Don't generate a new sample here, just update the UI to show the effect of ratio change | |
return f"Current mask/cut ratio: {mask_ratio_pct}%. Click 'New Sample' to apply." | |
mask_ratio.change( | |
update_on_ratio_change, | |
inputs=[mask_ratio, task_radio], | |
outputs=[result] | |
) | |
# Update the sample text and also update the mask count | |
def new_sample_with_count(mask_ratio_pct, task): | |
print(f"Generating new sample with mask ratio: {mask_ratio_pct}% for task: {task}") | |
ratio = float(mask_ratio_pct) / 100.0 | |
sample = get_new_sample(task, ratio) | |
mask_count_text = "" | |
if task == "mlm": | |
count = len(masked_tokens) | |
mask_count_text = f"**Number of [MASK] tokens to guess: {count}**" | |
print(f"Generated MLM sample with {count} masks at ratio {ratio}") | |
else: | |
mask_count_text = "**Next Token Prediction mode - guess one token at a time**" | |
print(f"Generated NTP sample with cut ratio {ratio}") | |
return sample, mask_count_text, "" | |
new_button.click( | |
new_sample_with_count, | |
inputs=[mask_ratio, task_radio], | |
outputs=[sample_text, mask_count, result] | |
) | |
reset_button.click(reset_stats, inputs=None, outputs=[result]) | |
# Unified check answer function | |
def unified_check_answer(user_input, task): | |
if task == "mlm": | |
return check_mlm_answer(user_input) | |
else: # ntp | |
return check_ntp_answer(user_input) | |
check_button.click( | |
unified_check_answer, | |
inputs=[answer_input, task_radio], | |
outputs=[result] | |
) | |
answer_input.submit( | |
unified_check_answer, | |
inputs=[answer_input, task_radio], | |
outputs=[result] | |
) | |
demo.launch() |