Spaces:
Runtime error
Runtime error
File size: 13,907 Bytes
30f5f00 cbbc299 30f5f00 cbbc299 30f5f00 cbbc299 30f5f00 cbbc299 30f5f00 cbbc299 30f5f00 59fd051 30f5f00 59fd051 30f5f00 59fd051 30f5f00 59fd051 30f5f00 59fd051 30f5f00 cbbc299 30f5f00 cbbc299 30f5f00 59fd051 30f5f00 59fd051 30f5f00 59fd051 30f5f00 59fd051 30f5f00 59fd051 30f5f00 59fd051 30f5f00 59fd051 30f5f00 59fd051 30f5f00 59fd051 30f5f00 59fd051 30f5f00 59fd051 30f5f00 59fd051 30f5f00 cbbc299 30f5f00 cbbc299 30f5f00 59fd051 30f5f00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
import gradio as gr
import random
import re
import numpy as np
from datasets import load_dataset
from transformers import AutoTokenizer
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# Initialize variables to track stats
user_stats = {
"mlm": {"correct": 0, "total": 0},
"ntp": {"correct": 0, "total": 0}
}
# Function to load and sample from the requested dataset
def load_sample_data(sample_size=100):
try:
# Try to load the requested dataset
dataset = load_dataset("mlfoundations/dclm-baseline-1.0-parquet", streaming=True)
dataset_field = "text" # Assuming the field name is "text"
except Exception as e:
print(f"Error loading requested dataset: {e}")
# Fallback to cc_news if there's an issue
dataset = load_dataset("vblagoje/cc_news", streaming=True)
dataset_field = "text"
# Sample from the dataset
samples = []
for i, example in enumerate(dataset["train"]):
if i >= sample_size:
break
# Get text from the appropriate field
if dataset_field in example and example[dataset_field]:
# Clean text by removing extra whitespaces
text = re.sub(r'\s+', ' ', example[dataset_field]).strip()
# Only include longer texts to make the task meaningful
if len(text.split()) > 20:
# Truncate to two sentences
sentences = re.split(r'(?<=[.!?])\s+', text)
if len(sentences) >= 2:
# Take only the first two sentences
two_sentence_text = ' '.join(sentences[:2])
samples.append(two_sentence_text)
return samples
# Load data at startup
data_samples = load_sample_data(100)
current_sample = None
masked_text = ""
original_text = ""
masked_indices = []
masked_tokens = []
current_task = "mlm"
def prepare_mlm_sample(text, mask_ratio=0.15):
"""Prepare a text sample for MLM by masking random tokens."""
global masked_indices, masked_tokens, original_text
tokens = tokenizer.tokenize(text)
# Only mask whole words, not special tokens or punctuation
maskable_indices = [i for i, token in enumerate(tokens)
if not token.startswith("##") and not token.startswith("[") and not token.endswith("]")
and token not in [".", ",", "!", "?", ";", ":", "'", "\"", "-"]]
# Calculate how many tokens to mask
num_to_mask = max(1, int(len(maskable_indices) * mask_ratio))
# Randomly select indices to mask
indices_to_mask = random.sample(maskable_indices, min(num_to_mask, len(maskable_indices)))
# Create a copy of tokens to mask
masked_tokens_list = tokens.copy()
original_tokens = []
# Replace selected tokens with [MASK]
for idx in indices_to_mask:
original_tokens.append(masked_tokens_list[idx])
masked_tokens_list[idx] = "[MASK]"
# Save info for evaluation
masked_indices = indices_to_mask
masked_tokens = original_tokens
original_text = text
# Convert back to text with masks
masked_text = tokenizer.convert_tokens_to_string(masked_tokens_list)
return masked_text, indices_to_mask, original_tokens
def prepare_ntp_sample(text, cut_ratio=0.3):
"""Prepare a text sample for NTP by cutting off the end."""
# Tokenize text to ensure reasonable cutting
tokens = tokenizer.tokenize(text)
# Ensure we have enough tokens
if len(tokens) < 5:
return text, "" # Return original if too short
# Calculate cutoff point (70% of tokens if cut_ratio is 0.3)
# But make sure we have at least 3 tokens visible and 1 token hidden
cutoff = max(3, int(len(tokens) * (1 - cut_ratio)))
cutoff = min(cutoff, len(tokens) - 1) # Ensure there's at least 1 token to predict
# Get the visible part
visible_tokens = tokens[:cutoff]
# Get the hidden part (to be predicted)
hidden_tokens = tokens[cutoff:]
# Convert back to text
visible_text = tokenizer.convert_tokens_to_string(visible_tokens)
hidden_text = tokenizer.convert_tokens_to_string(hidden_tokens)
return visible_text, hidden_text
def get_new_sample(task, mask_ratio=0.15):
"""Get a new text sample based on the task."""
global current_sample, masked_text, masked_indices, masked_tokens, original_text, ntp_state
# Select a random sample
current_sample = random.choice(data_samples)
if task == "mlm":
# Prepare MLM sample
masked_text, masked_indices, masked_tokens = prepare_mlm_sample(current_sample, mask_ratio)
return masked_text
else: # NTP
# Prepare NTP sample
visible_text, hidden_text = prepare_ntp_sample(current_sample, mask_ratio)
# Store original and visible for comparison
original_text = current_sample
masked_text = visible_text
# Reset NTP state for new iteration
ntp_state = {
"full_text": "",
"revealed_text": "",
"next_token_idx": 0,
"tokens": []
}
# Prepare for token-by-token prediction
prepare_next_token_prediction()
return visible_text
def check_mlm_answer(user_answers):
"""Check user MLM answers against the masked tokens."""
global user_stats
# Improved parsing of user answers to better handle different formats
# First replace any whitespace around commas with just commas
cleaned_answers = re.sub(r'\s*,\s*', ',', user_answers.strip())
# Then split by comma or whitespace
user_tokens = []
for token in re.split(r',|\s+', cleaned_answers):
if token: # Only add non-empty tokens
user_tokens.append(token.strip().lower())
# Ensure we have the same number of answers as masks
if len(user_tokens) != len(masked_tokens):
return f"Please provide {len(masked_tokens)} answers. You provided {len(user_tokens)}.\nFormat: word1, word2, word3"
# Compare each answer
correct = 0
feedback = []
for i, (user_token, orig_token) in enumerate(zip(user_tokens, masked_tokens)):
orig_token = orig_token.lower()
# Remove ## from subword tokens for comparison
if orig_token.startswith("##"):
orig_token = orig_token[2:]
if user_token == orig_token:
correct += 1
feedback.append(f"β Token {i+1}: '{user_token}' is correct!")
else:
feedback.append(f"β Token {i+1}: '{user_token}' should be '{orig_token}'")
# Update stats
user_stats["mlm"]["correct"] += correct
user_stats["mlm"]["total"] += len(masked_tokens)
# Calculate accuracy
accuracy = correct / len(masked_tokens) if masked_tokens else 0
accuracy_percentage = accuracy * 100
# Add overall accuracy to feedback
feedback.insert(0, f"Your accuracy: {correct}/{len(masked_tokens)} ({accuracy_percentage:.1f}%)")
# Calculate overall stats
overall_accuracy = user_stats["mlm"]["correct"] / user_stats["mlm"]["total"] if user_stats["mlm"]["total"] > 0 else 0
feedback.append(f"\nOverall MLM Accuracy: {user_stats['mlm']['correct']}/{user_stats['mlm']['total']} ({overall_accuracy*100:.1f}%)")
return "\n".join(feedback)
# Variable to store NTP state
ntp_state = {
"full_text": "",
"revealed_text": "",
"next_token_idx": 0,
"tokens": []
}
def prepare_next_token_prediction():
"""Prepare for the next token prediction."""
global ntp_state, masked_text, original_text
# Get the hidden part
full_hidden = original_text[len(masked_text):].strip()
# Tokenize the hidden part
ntp_state["tokens"] = tokenizer.tokenize(full_hidden)
ntp_state["full_text"] = full_hidden
ntp_state["revealed_text"] = ""
ntp_state["next_token_idx"] = 0
# Make sure we have tokens to predict
if not ntp_state["tokens"]:
# If we don't have tokens, get a new sample
new_text = get_new_sample("ntp", 0.3)
prepare_next_token_prediction()
def check_ntp_answer(user_continuation):
"""Check user NTP answer for the next token only."""
global user_stats, ntp_state, masked_text
# If we haven't set up NTP state yet, do it now
if not ntp_state["tokens"]:
prepare_next_token_prediction()
# No more tokens to predict
if ntp_state["next_token_idx"] >= len(ntp_state["tokens"]):
# Reset for next round
return "You've completed this prediction! Click 'New Sample' for another."
# Get the next token to predict
next_token = ntp_state["tokens"][ntp_state["next_token_idx"]]
# Get user's prediction
user_text = user_continuation.strip()
# Tokenize user's prediction to get their first token
user_tokens = tokenizer.tokenize(user_text)
user_token = user_tokens[0].lower() if user_tokens else ""
# Clean up tokens for comparison
next_token_clean = next_token.lower()
if next_token_clean.startswith("##"):
next_token_clean = next_token_clean[2:]
if user_token.startswith("##"):
user_token = user_token[2:]
# Check if correct
is_correct = (user_token == next_token_clean)
# Update stats
if is_correct:
user_stats["ntp"]["correct"] += 1
user_stats["ntp"]["total"] += 1
# Reveal this token and prepare for next
ntp_state["revealed_text"] += " " + tokenizer.convert_tokens_to_string([next_token])
ntp_state["next_token_idx"] += 1
# Calculate overall accuracy
overall_accuracy = user_stats["ntp"]["correct"] / user_stats["ntp"]["total"] if user_stats["ntp"]["total"] > 0 else 0
feedback = []
if is_correct:
feedback.append(f"β Correct! The next token was indeed '{next_token_clean}'")
else:
feedback.append(f"β Not quite. The actual next token was '{next_token_clean}'")
# Show progress
feedback.append(f"\nRevealed so far: {masked_text}{ntp_state['revealed_text']}")
# If there are more tokens, prompt for next
if ntp_state["next_token_idx"] < len(ntp_state["tokens"]):
feedback.append(f"\nPredict the next token...")
else:
feedback.append(f"\nPrediction complete! Full text was:\n{original_text}")
# Show overall stats
feedback.append(f"\nOverall NTP Accuracy: {user_stats['ntp']['correct']}/{user_stats['ntp']['total']} ({overall_accuracy*100:.1f}%)")
return "\n".join(feedback)
def switch_task(task):
"""Switch between MLM and NTP tasks."""
global current_task
current_task = task
return gr.update(visible=(task == "mlm")), gr.update(visible=(task == "ntp"))
def generate_new_sample(mask_ratio):
"""Generate a new sample based on current task."""
ratio = float(mask_ratio) / 100.0 # Convert percentage to ratio
sample = get_new_sample(current_task, ratio)
return sample, ""
def check_answer(user_input, task):
"""Check user answer based on current task."""
if task == "mlm":
return check_mlm_answer(user_input)
else: # NTP
return check_ntp_answer(user_input)
def reset_stats():
"""Reset user statistics."""
global user_stats
user_stats = {
"mlm": {"correct": 0, "total": 0},
"ntp": {"correct": 0, "total": 0}
}
return "Statistics have been reset."
# Set up Gradio interface
with gr.Blocks(title="MLM and NTP Testing") as demo:
gr.Markdown("# Language Model Testing: MLM vs NTP")
gr.Markdown("Test your skills at Masked Language Modeling (MLM) and Next Token Prediction (NTP)")
with gr.Row():
task_radio = gr.Radio(
["mlm", "ntp"],
label="Task Type",
value="mlm",
info="MLM: Guess the masked words | NTP: Predict what comes next"
)
mask_ratio = gr.Slider(
minimum=5,
maximum=50,
value=15,
step=5,
label="Mask/Cut Ratio (%)",
info="Percentage of tokens to mask (MLM) or text to hide (NTP)"
)
sample_text = gr.Textbox(
label="Text Sample",
placeholder="Click 'New Sample' to get started",
value=get_new_sample("mlm", 0.15),
lines=10,
interactive=False
)
with gr.Row():
new_button = gr.Button("New Sample")
reset_button = gr.Button("Reset Stats")
with gr.Group() as mlm_group:
mlm_answer = gr.Textbox(
label="Your MLM answers (separated by commas)",
placeholder="word1, word2, word3, etc.",
lines=1
)
gr.Markdown("**Example input format:** finding, its, phishing, in, links, 49, and, it")
with gr.Group(visible=False) as ntp_group:
ntp_answer = gr.Textbox(
label="Your Next Token Prediction",
placeholder="Predict the next token/word...",
lines=1
)
with gr.Row():
check_button = gr.Button("Check Answer")
result = gr.Textbox(label="Result", lines=6)
# Set up event handlers
task_radio.change(switch_task, inputs=[task_radio], outputs=[mlm_group, ntp_group])
new_button.click(generate_new_sample, inputs=[mask_ratio], outputs=[sample_text, result])
reset_button.click(reset_stats, inputs=None, outputs=[result])
check_button.click(
check_answer,
inputs=[
gr.Textbox(value=lambda: mlm_answer.value if current_task == "mlm" else ntp_answer.value),
task_radio
],
outputs=[result]
)
mlm_answer.submit(check_mlm_answer, inputs=[mlm_answer], outputs=[result])
ntp_answer.submit(check_ntp_answer, inputs=[ntp_answer], outputs=[result])
demo.launch() |