orhir commited on
Commit
340da74
·
verified ·
1 Parent(s): 184241a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -107
README.md CHANGED
@@ -1,107 +1,10 @@
1
- # Edge Weight Prediction For Category-Agnostic Pose Estimation
2
- <a href="https://orhir.github.io/edge_cape/"><img src="https://img.shields.io/static/v1?label=Project&message=Website&color=blue"></a>
3
- <a href="https://arxiv.org/pdf/2411.16665"><img src="https://img.shields.io/badge/arXiv-311.17891-b31b1b.svg"></a>
4
- <a href="https://www.apache.org/licenses/LICENSE-2.0.txt">
5
- <img src="https://img.shields.io/badge/License-Apache-yellow"></a>
6
-
7
-
8
- By [Or Hirschorn](https://scholar.google.co.il/citations?user=GgFuT_QAAAAJ&hl=iw&oi=ao) and [Shai Avidan](https://scholar.google.co.il/citations?hl=iw&user=hpItE1QAAAAJ)
9
-
10
- This repo is the official implementation of "[Edge Weight Prediction For Category-Agnostic Pose Estimation
11
- ](https://arxiv.org/abs/2411.16665)".
12
-
13
- # Hugging Face Demo Coming Soon!
14
- ### Stay tuned for the upcoming demo release!
15
-
16
-
17
- ## 🔔 News
18
- - **`25 November 2024`** Initial Code Release
19
-
20
-
21
- ## Introduction
22
- Given only one example image and skeleton, our method refines the skeleton to enhance pose estimation on unseen categories.
23
-
24
- Using our method, given a support image and skeleton we can refine the structure for better pose estimation on images from unseen categories.
25
-
26
- ## Citation
27
- Please consider citing our paper and GraphCape if you found our work useful:
28
- ```bibtex
29
- @misc{hirschorn2024edgeweightpredictioncategoryagnostic,
30
- title={Edge Weight Prediction For Category-Agnostic Pose Estimation},
31
- author={Or Hirschorn and Shai Avidan},
32
- year={2024},
33
- eprint={2411.16665},
34
- archivePrefix={arXiv},
35
- primaryClass={cs.CV},
36
- url={https://arxiv.org/abs/2411.16665},
37
- }
38
-
39
- @misc{hirschorn2023pose,
40
- title={A Graph-Based Approach for Category-Agnostic Pose Estimation},
41
- author={Or Hirschorn and Shai Avidan},
42
- year={2024},
43
- eprint={2311.17891},
44
- archivePrefix={arXiv},
45
- primaryClass={cs.CV},
46
- url={https://arxiv.org/abs/2311.17891},
47
- }
48
- ```
49
-
50
- ## Getting Started
51
-
52
- ### Docker [Recommended]
53
- We provide a docker image for easy use.
54
- You can simply pull the docker image from docker hub, containing all the required libraries and packages:
55
-
56
- ```
57
- docker pull orhir/edgecape
58
- docker run --name edgecape -v {DATA_DIR}:/workspace/EdgeCape/EdgeCape/data/mp100 -it orhir/edgecape /bin/bash
59
- ```
60
- ### Conda Environment
61
- We train and evaluate our model on Python 3.8 and Pytorch 2.0.1 with CUDA 12.1.
62
-
63
- Please first install pytorch and torchvision following official documentation Pytorch.
64
- Then, follow [MMPose](https://mmpose.readthedocs.io/en/latest/installation.html) to install the following packages:
65
- ```
66
- mmcv-full=1.7.2
67
- mmpose=0.29.0
68
- ```
69
- Having installed these packages, run:
70
- ```
71
- python setup.py develop
72
- ```
73
-
74
- ## MP-100 Dataset
75
- Please follow the [official guide](https://github.com/orhir/PoseAnything) to prepare the MP-100 dataset for training and evaluation, and organize the data structure properly.
76
-
77
- ## Training
78
-
79
- ### Training
80
- To train the model, run:
81
- ```
82
- python run.py --config [path_to_config_file] --work_dir [path_to_work_dir]
83
- ```
84
-
85
- ## Evaluation and Pretrained Models
86
-
87
- ### Evaluation
88
- The evaluation on a single GPU will take approximately 30 min.
89
-
90
- To evaluate the pretrained model, run:
91
- ```
92
- python test.py [path_to_config_file] [path_to_pretrained_ckpt]
93
- ```
94
-
95
- ### Pretrained Models
96
-
97
- You can download the pretrained models from following [link](https://drive.google.com/drive/folders/1gbeeVQ-Y8Dj2FrsDatf5ZLWpzv5u8HyL?usp=sharing).
98
-
99
- ## Acknowledgement
100
-
101
- Our code is based on code from:
102
- - [MMPose](https://github.com/open-mmlab/mmpose)
103
- - [PoseAnything](https://github.com/orhir/PoseAnything)
104
-
105
-
106
- ## License
107
- This project is released under the Apache 2.0 license.
 
1
+ title: EdgeCape
2
+ emoji: 🏢
3
+ colorFrom: red
4
+ colorTo: red
5
+ sdk: gradio
6
+ sdk_version: 5.7.1
7
+ app_file: app.py
8
+ pinned: false
9
+ license: apache-2.0
10
+ startup_duration_timeout: 1h