Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,794 Bytes
0e6ae18 85f6bd9 0e6ae18 184241a be07db5 184241a 6036218 0e6ae18 184241a 0e6ae18 184241a 8e246b4 184241a 0e6ae18 184241a 3c43b62 184241a 8e246b4 0e6ae18 3c43b62 184241a 0e6ae18 be07db5 0e6ae18 184241a 8e246b4 184241a b6de01d 83f87d6 7b49f58 b6de01d cfd2d4a 087a374 184241a 0e6ae18 184241a 0e6ae18 12fc9ad 0e6ae18 184241a 0e6ae18 184241a 0e6ae18 184241a 7b49f58 184241a 83f87d6 184241a 0e6ae18 184241a 83f87d6 225166a 184241a 3c43b62 184241a 0e6ae18 5c8e0a0 0e6ae18 184241a ee7caad 184241a 0e6ae18 184241a 0e6ae18 184241a 6036218 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import copy
import spaces
import json
import random
import collections.abc
import gradio as gr
import numpy as np
import psutil
import torch
from PIL import ImageDraw, Image, ImageEnhance
from matplotlib import pyplot as plt
from mmcv import Config
from mmcv.runner import load_checkpoint
from mmpose.core import wrap_fp16_model
from mmpose.models import build_posenet
from torchvision import transforms
import matplotlib.patheffects as mpe
import pickle
from pprint import pformat as pf
from EdgeCape import TopDownGenerateTargetFewShot
from demo import Resize_Pad
from EdgeCape.models import *
def process_img(support_image, global_state):
global_state['images']['image_orig'] = support_image
if global_state["load_example"]:
global_state["load_example"] = False
return global_state['images']['image_kp'], global_state
_, _ = reset_kp(global_state)
return support_image, global_state
def adj_mx_from_edges(num_pts, skeleton, device='cpu', normalization_fix=True):
adj_mx = torch.empty(0, device=device)
batch_size = len(skeleton)
for b in range(batch_size):
edges = torch.tensor(skeleton[b]).long()
adj = torch.zeros(num_pts, num_pts, device=device)
adj[edges[:, 0], edges[:, 1]] = 1
adj_mx = torch.concatenate((adj_mx, adj.unsqueeze(0)), dim=0)
trans_adj_mx = torch.transpose(adj_mx, 1, 2)
cond = (trans_adj_mx > adj_mx).float()
adj = adj_mx + trans_adj_mx * cond - adj_mx * cond
return adj
def plot_results(support_img, query_img, query_w,
skeleton=None, prediction=None, radius=6, in_color=None,
original_skeleton=None, img_alpha=0.6, target_keypoints=None):
h, w, c = support_img.shape
prediction = prediction[-1] * h
if isinstance(prediction, torch.Tensor):
prediction = prediction.numpy()
if isinstance(original_skeleton, list):
original_skeleton = adj_mx_from_edges(num_pts=prediction.shape[0], skeleton=[original_skeleton]).numpy()[0]
query_img = (query_img - np.min(query_img)) / (np.max(query_img) - np.min(query_img))
img = query_img
w = query_w
keypoint = prediction
adj = skeleton
color = None
f, axes = plt.subplots()
plt.imshow(img, alpha=img_alpha)
for k in range(keypoint.shape[0]):
if w[k] > 0:
kp = keypoint[k, :2]
c = (1, 0, 0, 0.75) if w[k] == 1 else (0, 0, 1, 0.6)
patch = plt.Circle(kp,
radius,
color=c,
path_effects=[mpe.withStroke(linewidth=2, foreground='black')],
zorder=200)
axes.add_patch(patch)
axes.text(kp[0], kp[1], k, fontsize=(radius + 4), color='white', ha="center", va="center",
zorder=300,
path_effects=[
mpe.withStroke(linewidth=max(1, int((radius + 4) / 5)), foreground='black')])
plt.draw()
if adj is not None:
max_skel_val = np.max(adj)
draw_skeleton = adj / max_skel_val * 6
for i in range(1, keypoint.shape[0]):
for j in range(0, i):
if w[i] > 0 and w[j] > 0 and original_skeleton[i][j] > 0:
if color is None:
num_colors = int((adj > 0.05).sum() / 2)
color = iter(plt.cm.rainbow(np.linspace(0, 1, num_colors + 1)))
c = next(color)
elif isinstance(color, str):
c = color
elif isinstance(color, collections.abc.Iterable):
c = next(color)
else:
raise ValueError("Color must be a string or an iterable")
if w[i] > 0 and w[j] > 0 and adj[i][j] > 0:
width = draw_skeleton[i][j]
stroke_width = width + (width / 3)
patch = plt.Line2D([keypoint[i, 0], keypoint[j, 0]],
[keypoint[i, 1], keypoint[j, 1]],
linewidth=width, color=c, alpha=0.6,
path_effects=[mpe.withStroke(linewidth=stroke_width, foreground='black')],
zorder=1)
axes.add_artist(patch)
plt.axis('off') # command for hiding the axis.
return plt
@spaces.GPU(duration=30)
def estimate(model, data):
model.cuda()
data['img_s'] = [s.cuda() for s in data['img_s']]
data['img_q'] = data['img_q'].cuda()
data['target_s'] = [s.cuda() for s in data['target_s']]
data['target_weight_s'] = [s.cuda() for s in data['target_weight_s']]
with torch.no_grad():
return model(**data)
def process(query_img, state,
cfg_path='configs/test/1shot_split1.py',
checkpoint_path='ckpt/1shot_split1.pth'):
print(state)
device = print_memory_usage()
cfg = Config.fromfile(cfg_path)
width, height, _ = np.array(state['images']['image_orig']).shape
kp_src_np = np.array(state['points']).copy().astype(np.float32)
kp_src_np[:, 0] = kp_src_np[:, 0] / width * 256
kp_src_np[:, 1] = kp_src_np[:, 1] / height * 256
kp_src_np = kp_src_np.copy()
kp_src_tensor = torch.tensor(kp_src_np).float()
preprocess = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
Resize_Pad(256, 256)
])
if len(state['skeleton']) == 0:
state['skeleton'] = [(0, 0)]
support_img = preprocess(state['images']['image_orig']).flip(0)[None]
np_query = np.array(query_img)[:, :, ::-1].copy()
q_img = preprocess(np_query).flip(0)[None]
# Create heatmap from keypoints
genHeatMap = TopDownGenerateTargetFewShot()
data_cfg = cfg.data_cfg
data_cfg['image_size'] = np.array([256, 256])
data_cfg['joint_weights'] = None
data_cfg['use_different_joint_weights'] = False
kp_src_3d = torch.cat(
(kp_src_tensor, torch.zeros(kp_src_tensor.shape[0], 1)), dim=-1)
kp_src_3d_weight = torch.cat(
(torch.ones_like(kp_src_tensor),
torch.zeros(kp_src_tensor.shape[0], 1)), dim=-1)
target_s, target_weight_s = genHeatMap._msra_generate_target(data_cfg,
kp_src_3d,
kp_src_3d_weight,
sigma=1)
target_s = torch.tensor(target_s).float()[None]
target_weight_s = torch.ones_like(
torch.tensor(target_weight_s).float()[None])
data = {
'img_s': [support_img],
'img_q': q_img,
'target_s': [target_s],
'target_weight_s': [target_weight_s],
'target_q': None,
'target_weight_q': None,
'return_loss': False,
'img_metas': [{'sample_skeleton': [state['skeleton']],
'query_skeleton': state['skeleton'],
'sample_joints_3d': [kp_src_3d],
'query_joints_3d': kp_src_3d,
'sample_center': [kp_src_tensor.mean(dim=0)],
'query_center': kp_src_tensor.mean(dim=0),
'sample_scale': [
kp_src_tensor.max(dim=0)[0] -
kp_src_tensor.min(dim=0)[0]
],
'query_scale': kp_src_tensor.max(dim=0)[0] -
kp_src_tensor.min(dim=0)[0],
'sample_rotation': [0],
'query_rotation': 0,
'sample_bbox_score': [1],
'query_bbox_score': 1,
'query_image_file': '',
'sample_image_file': [''],
}]
}
# Load model
model = build_posenet(cfg.model)
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
load_checkpoint(model, checkpoint_path, map_location='cpu')
model.eval()
outputs = estimate(model, data)
# visualize results
vis_s_weight = target_weight_s[0]
vis_s_image = support_img[0].detach().cpu().numpy().transpose(1, 2, 0)
vis_q_image = q_img[0].detach().cpu().numpy().transpose(1, 2, 0)
support_kp = kp_src_3d
out = plot_results(vis_s_image,
vis_q_image,
vis_s_weight,
skeleton=outputs['skeleton'][1],
prediction=torch.tensor(outputs['points']).squeeze().cpu(),
original_skeleton=state['skeleton'],
img_alpha=1.0,
)
return out
def update_examples(support_img, query_image, global_state_str):
example_state = json.loads(global_state_str)
example_state["load_example"] = True
example_state["curr_type_point"] = "start"
example_state["prev_point"] = None
example_state['images'] = {}
example_state['images']['image_orig'] = support_img
example_state['images']['image_kp'] = support_img
example_state['images']['image_skeleton'] = support_img
image_draw = example_state['images']['image_orig'].copy()
for xy in example_state['points']:
image_draw = update_image_draw(
image_draw,
xy,
example_state
)
kp_image = image_draw.copy()
example_state['images']['image_kp'] = kp_image
pts_list = example_state['points']
for limb in example_state['skeleton']:
prev_point = pts_list[limb[0]]
curr_point = pts_list[limb[1]]
points = [prev_point, curr_point]
image_draw = draw_limbs_on_image(image_draw,
points
)
skel_image = image_draw.copy()
example_state['images']['image_skel'] = skel_image
return (support_img,
kp_image,
skel_image,
query_image,
example_state)
def get_select_coords(global_state,
evt: gr.SelectData
):
"""This function only support click for point selection
"""
xy = evt.index
global_state["points"].append(xy)
image_raw = global_state['images']['image_kp']
image_draw = update_image_draw(
image_raw,
xy,
global_state
)
global_state['images']['image_kp'] = image_draw
return global_state, image_draw
def get_closest_point_idx(pts_list, xy):
x, y = xy
closest_point = min(pts_list, key=lambda p: (p[0] - x) ** 2 + (p[1] - y) ** 2)
closest_point_index = pts_list.index(closest_point)
return closest_point_index
def reset_skeleton(global_state):
image = global_state["images"]["image_kp"]
global_state["images"]["image_skel"] = image
global_state["skeleton"] = []
global_state["curr_type_point"] = "start"
global_state["prev_point"] = None
return image
def reset_kp(global_state):
image = global_state["images"]["image_orig"]
global_state["images"]["image_kp"] = image
global_state["images"]["image_skel"] = image
global_state["skeleton"] = []
global_state["points"] = []
global_state["curr_type_point"] = "start"
global_state["prev_point"] = None
return image, image
def select_skeleton(global_state,
evt: gr.SelectData,
):
xy = evt.index
pts_list = global_state["points"]
closest_point_idx = get_closest_point_idx(pts_list, xy)
image_raw = global_state['images']['image_skel']
if global_state["curr_type_point"] == "end":
prev_point_idx = global_state["prev_point_idx"]
prev_point = pts_list[prev_point_idx]
current_point = pts_list[closest_point_idx]
points = [prev_point, current_point]
image_draw = draw_limbs_on_image(image_raw,
points
)
global_state['images']['image_skel'] = image_draw
global_state['skeleton'].append([prev_point_idx, closest_point_idx])
global_state["curr_type_point"] = "start"
global_state["prev_point_idx"] = None
else:
global_state["prev_point_idx"] = closest_point_idx
global_state["curr_type_point"] = "end"
return global_state, global_state['images']['image_skel']
def reverse_point_pairs(points):
new_points = []
for p in points:
new_points.append([p[1], p[0]])
return new_points
def update_image_draw(image, points, global_state):
if len(global_state["points"]) < 2:
alpha = 0.5
else:
alpha = 1.0
image_draw = draw_points_on_image(image, points, alpha=alpha)
return image_draw
def print_memory_usage():
# Print system memory usage
print(f"System memory usage: {psutil.virtual_memory().percent}%")
# Print GPU memory usage
if torch.cuda.is_available():
device = torch.device("cuda")
print(f"GPU memory usage: {torch.cuda.memory_allocated() / 1e9} GB")
print(
f"Max GPU memory usage: {torch.cuda.max_memory_allocated() / 1e9} GB")
device_properties = torch.cuda.get_device_properties(device)
available_memory = device_properties.total_memory - \
torch.cuda.max_memory_allocated()
print(f"Available GPU memory: {available_memory / 1e9} GB")
else:
device = "cpu"
print("No GPU available")
return device
def draw_limbs_on_image(image,
points,):
color = tuple(random.choices(range(256), k=3))
overlay_rgba = Image.new("RGBA", image.size, 0)
overlay_draw = ImageDraw.Draw(overlay_rgba)
p_start, p_target = points
if p_start is not None and p_target is not None:
p_draw = int(p_start[0]), int(p_start[1])
t_draw = int(p_target[0]), int(p_target[1])
overlay_draw.line(
(p_draw[0], p_draw[1], t_draw[0], t_draw[1]),
fill=color,
width=10,
)
return Image.alpha_composite(image.convert("RGBA"),
overlay_rgba).convert("RGB")
def draw_points_on_image(image,
points,
radius_scale=0.01,
alpha=1.):
if alpha < 1:
enhancer = ImageEnhance.Brightness(image)
image = enhancer.enhance(1.1)
overlay_rgba = Image.new("RGBA", image.size, 0)
overlay_draw = ImageDraw.Draw(overlay_rgba)
p_color = (255, 0, 0)
rad_draw = int(image.size[0] * radius_scale)
if points is not None:
p_draw = int(points[0]), int(points[1])
overlay_draw.ellipse(
(
p_draw[0] - rad_draw,
p_draw[1] - rad_draw,
p_draw[0] + rad_draw,
p_draw[1] + rad_draw,
),
fill=p_color,
)
return Image.alpha_composite(image.convert("RGBA"), overlay_rgba).convert("RGB")
def pickle_trick(obj, max_depth=10):
output = {}
if max_depth <= 0:
return output
try:
pickle.dumps(obj)
except (pickle.PicklingError, TypeError) as e:
failing_children = []
if hasattr(obj, "__dict__"):
for k, v in obj.__dict__.items():
result = pickle_trick(v, max_depth=max_depth - 1)
if result:
failing_children.append(result)
output = {
"fail": obj,
"err": e,
"depth": max_depth,
"failing_children": failing_children
}
return output |