File size: 5,853 Bytes
e79ef02
9c4cd96
 
 
 
 
 
184241a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os

import mim
mim.install('mmcv-full==1.7.2')
mim.install('mmdet==2.28.2')
mim.install('mmpose==0.29.0')

import argparse
from pathlib import Path

import gradio as gr
import matplotlib

from gradio_utils.utils import (process_img, get_select_coords, select_skeleton,
                                reset_skeleton, reset_kp, process)

LENGTH = 480  # Length of the square area displaying/editing images

matplotlib.use('agg')
model_dir = Path('./checkpoints')
parser = argparse.ArgumentParser(description='EdgeCape Demo')
parser.add_argument('--checkpoint',
                    help='checkpoint path',
                    default='ckpt/1shot_split1.pth')
args = parser.parse_args()
checkpoint_path = args.checkpoint
device = 'cuda'
TIMEOUT = 80

with gr.Blocks() as demo:
    gr.Markdown('''
    # We introduce EdgeCape, a novel framework that overcomes these limitations by predicting the graph's edge weights which optimizes localization. 
    To further leverage structural priors, we propose integrating Markovian Structural Bias, which modulates the self-attention interaction between nodes based on the number of hops between them. 
    We show that this improves the model’s ability to capture global spatial dependencies. 
    Evaluated on the MP-100 benchmark, which includes 100 categories and over 20K images, 
    EdgeCape achieves state-of-the-art results in the 1-shot setting and leads among similar-sized methods in the 5-shot setting, significantly improving keypoint localization accuracy.
    ### [Paper](https://arxiv.org/pdf/2411.16665) | [Project Page](https://orhir.github.io/edge_cape/) 
    ## Instructions
    1. Upload an image of the object you want to pose.
    2. Mark keypoints on the image.
    3. Mark limbs on the image.
    4. Upload an image of the object you want to pose to the query image (**bottom**).
    5. Click **Evaluate** to pose the query image.
    ''')

    global_state = gr.State({
        "images": {},
        "points": [],
        "skeleton": [],
        "prev_point": None,
        "curr_type_point": "start",
    })
    with gr.Row():
        # Upload & Preprocess Image Column
        with gr.Column():
            gr.Markdown(
                """<p style="text-align: center; font-size: 20px">Upload & Preprocess Image</p>"""
            )
            support_image = gr.Image(
                height=LENGTH,
                width=LENGTH,
                type="pil",
                image_mode="RGB",
                label="Preprocess Image",
                show_label=True,
                interactive=True,
            )

        # Click Points Column
        with gr.Column():
            gr.Markdown(
                """<p style="text-align: center; font-size: 20px">Click Points</p>"""
            )
            kp_support_image = gr.Image(
                type="pil",
                label="Keypoints Image",
                show_label=True,
                height=LENGTH,
                width=LENGTH,
                interactive=False,
                show_fullscreen_button=False,
            )
            with gr.Row():
                confirm_kp_button = gr.Button("Confirm Clicked Points", scale=3)
            with gr.Row():
                undo_kp_button = gr.Button("Undo Clicked Points", scale=3)

        # Editing Results Column
        with gr.Column():
            gr.Markdown(
                """<p style="text-align: center; font-size: 20px">Click Skeleton</p>"""
            )
            skel_support_image = gr.Image(
                type="pil",
                label="Skeleton Image",
                show_label=True,
                height=LENGTH,
                width=LENGTH,
                interactive=False,
                show_fullscreen_button=False,
            )
            with gr.Row():
                pass
            with gr.Row():
                undo_skel_button = gr.Button("Undo Skeleton")

    with gr.Row():
        with gr.Column():
            gr.Markdown(
                """<p style="text-align: center; font-size: 20px">Query Image</p>"""
            )
            query_image = gr.Image(
                type="pil",
                image_mode="RGB",
                label="Query Image",
                show_label=True,
                interactive=True,
            )
        with gr.Column():
            gr.Markdown(
                """<p style="text-align: center; font-size: 20px">Output</p>"""
            )
            output_img = gr.Plot(label="Output Image",)
    with gr.Row():
        eval_btn = gr.Button(value="Evaluate")
    with gr.Row():
        gr.Markdown("## Examples")

    support_image.change(process_img,
                         inputs=[support_image, global_state],
                         outputs=[kp_support_image, global_state])
    kp_support_image.select(get_select_coords,
                       [global_state],
                       [global_state, kp_support_image],
                       queue=False,)
    confirm_kp_button.click(reset_skeleton,
                            inputs=global_state,
                            outputs=skel_support_image)
    undo_kp_button.click(reset_kp,
                         inputs=global_state,
                         outputs=[kp_support_image, skel_support_image])
    undo_skel_button.click(reset_skeleton,
                            inputs=global_state,
                            outputs=skel_support_image)
    skel_support_image.select(select_skeleton,
                              inputs=[global_state],
                              outputs=[global_state, skel_support_image])
    eval_btn.click(fn=process,
                   inputs=[query_image, global_state],
                   outputs=[output_img, global_state])

if __name__ == "__main__":
    print("Start app", parser.parse_args())
    gr.close_all()
    demo.launch(show_api=False)