Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,630 Bytes
184241a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
# Edge Weight Prediction For Category-Agnostic Pose Estimation
<a href="https://orhir.github.io/edge_cape/"><img src="https://img.shields.io/static/v1?label=Project&message=Website&color=blue"></a>
<a href="https://arxiv.org/pdf/2411.16665"><img src="https://img.shields.io/badge/arXiv-311.17891-b31b1b.svg"></a>
<a href="https://www.apache.org/licenses/LICENSE-2.0.txt">
<img src="https://img.shields.io/badge/License-Apache-yellow"></a>
By [Or Hirschorn](https://scholar.google.co.il/citations?user=GgFuT_QAAAAJ&hl=iw&oi=ao) and [Shai Avidan](https://scholar.google.co.il/citations?hl=iw&user=hpItE1QAAAAJ)
This repo is the official implementation of "[Edge Weight Prediction For Category-Agnostic Pose Estimation
](https://arxiv.org/abs/2411.16665)".
# Hugging Face Demo Coming Soon!
### Stay tuned for the upcoming demo release!
## 🔔 News
- **`25 November 2024`** Initial Code Release
## Introduction
Given only one example image and skeleton, our method refines the skeleton to enhance pose estimation on unseen categories.
Using our method, given a support image and skeleton we can refine the structure for better pose estimation on images from unseen categories.
## Citation
Please consider citing our paper and GraphCape if you found our work useful:
```bibtex
@misc{hirschorn2024edgeweightpredictioncategoryagnostic,
title={Edge Weight Prediction For Category-Agnostic Pose Estimation},
author={Or Hirschorn and Shai Avidan},
year={2024},
eprint={2411.16665},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2411.16665},
}
@misc{hirschorn2023pose,
title={A Graph-Based Approach for Category-Agnostic Pose Estimation},
author={Or Hirschorn and Shai Avidan},
year={2024},
eprint={2311.17891},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2311.17891},
}
```
## Getting Started
### Docker [Recommended]
We provide a docker image for easy use.
You can simply pull the docker image from docker hub, containing all the required libraries and packages:
```
docker pull orhir/edgecape
docker run --name edgecape -v {DATA_DIR}:/workspace/EdgeCape/EdgeCape/data/mp100 -it orhir/edgecape /bin/bash
```
### Conda Environment
We train and evaluate our model on Python 3.8 and Pytorch 2.0.1 with CUDA 12.1.
Please first install pytorch and torchvision following official documentation Pytorch.
Then, follow [MMPose](https://mmpose.readthedocs.io/en/latest/installation.html) to install the following packages:
```
mmcv-full=1.7.2
mmpose=0.29.0
```
Having installed these packages, run:
```
python setup.py develop
```
## MP-100 Dataset
Please follow the [official guide](https://github.com/orhir/PoseAnything) to prepare the MP-100 dataset for training and evaluation, and organize the data structure properly.
## Training
### Training
To train the model, run:
```
python run.py --config [path_to_config_file] --work_dir [path_to_work_dir]
```
## Evaluation and Pretrained Models
### Evaluation
The evaluation on a single GPU will take approximately 30 min.
To evaluate the pretrained model, run:
```
python test.py [path_to_config_file] [path_to_pretrained_ckpt]
```
### Pretrained Models
You can download the pretrained models from following [link](https://drive.google.com/drive/folders/1gbeeVQ-Y8Dj2FrsDatf5ZLWpzv5u8HyL?usp=sharing).
## Acknowledgement
Our code is based on code from:
- [MMPose](https://github.com/open-mmlab/mmpose)
- [PoseAnything](https://github.com/orhir/PoseAnything)
## License
This project is released under the Apache 2.0 license. |