Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,18 +3,25 @@ import streamlit as st
|
|
3 |
|
4 |
|
5 |
@st.cache_data
|
6 |
-
def
|
|
|
|
|
|
|
7 |
tokenizer = AutoTokenizer.from_pretrained("oracat/bert-paper-classifier")
|
8 |
model = AutoModelForSequenceClassification.from_pretrained("oracat/bert-paper-classifier")
|
|
|
9 |
|
10 |
|
11 |
def process(text):
|
|
|
|
|
|
|
12 |
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
13 |
result = pipe(text)[0]
|
14 |
return results['label']
|
15 |
|
16 |
|
17 |
-
|
18 |
|
19 |
st.markdown("### Hello, paper classifier!")
|
20 |
|
|
|
3 |
|
4 |
|
5 |
@st.cache_data
|
6 |
+
def prepare_model():
|
7 |
+
"""
|
8 |
+
Prepare the tokenizer and the model for classification.
|
9 |
+
"""
|
10 |
tokenizer = AutoTokenizer.from_pretrained("oracat/bert-paper-classifier")
|
11 |
model = AutoModelForSequenceClassification.from_pretrained("oracat/bert-paper-classifier")
|
12 |
+
return (tokenizer, model)
|
13 |
|
14 |
|
15 |
def process(text):
|
16 |
+
"""
|
17 |
+
Translate incoming text to tokens and classify it
|
18 |
+
"""
|
19 |
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
20 |
result = pipe(text)[0]
|
21 |
return results['label']
|
22 |
|
23 |
|
24 |
+
tokenizer, model = prepare_model()
|
25 |
|
26 |
st.markdown("### Hello, paper classifier!")
|
27 |
|