import csv import os from datetime import datetime from typing import Optional import gradio as gr from huggingface_hub import HfApi, Repository from optimum_neuron_export import convert from gradio_huggingfacehub_search import HuggingfaceHubSearch from apscheduler.schedulers.background import BackgroundScheduler DATASET_REPO_URL = "https://huggingface.co/datasets/optimum/neuron-exports" DATA_FILENAME = "exports.csv" DATA_FILE = os.path.join("data", DATA_FILENAME) HF_TOKEN = os.environ.get("HF_WRITE_TOKEN") DATADIR = "neuron_exports_data" repo: Optional[Repository] = None # Uncomment if you want to push to dataset repo with token # if HF_TOKEN: # repo = Repository(local_dir=DATADIR, clone_from=DATASET_REPO_URL, token=HF_TOKEN) def neuron_export(model_id: str, task: str) -> str: if not model_id: return f"### Invalid input 🐞 Please specify a model name, got {model_id}" try: api = HfApi(token=HF_TOKEN) # Use HF_TOKEN if available, else anonymous token = HF_TOKEN # Pass token to convert only if available error, commit_info = convert(api=api, model_id=model_id, task=task, token=token) if error != "0": return error print("[commit_info]", commit_info) # Save in a private dataset if repo initialized if repo is not None: repo.git_pull(rebase=True) with open(os.path.join(DATADIR, DATA_FILE), "a") as csvfile: writer = csv.DictWriter( csvfile, fieldnames=["model_id", "pr_url", "time"] ) writer.writerow( { "model_id": model_id, "pr_url": commit_info.pr_url, "time": str(datetime.now()), } ) commit_url = repo.push_to_hub() print("[dataset]", commit_url) pr_revision = commit_info.pr_revision.replace("/", "%2F") return f"#### Success 🔥 This model was successfully exported and a PR was opened: [{commit_info.pr_url}]({commit_info.pr_url}). To use the model before the PR is approved, go to https://huggingface.co/{model_id}/tree/{pr_revision}" except Exception as e: return f"#### Error: {e}" TITLE_IMAGE = """