Commit
·
edc1c57
1
Parent(s):
ffb6a5b
Delete app.py
Browse files
app.py
DELETED
@@ -1,269 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import gradio as gr
|
3 |
-
import requests
|
4 |
-
import time
|
5 |
-
import json
|
6 |
-
import base64
|
7 |
-
import os
|
8 |
-
from io import BytesIO
|
9 |
-
import PIL
|
10 |
-
from PIL.ExifTags import TAGS
|
11 |
-
import html
|
12 |
-
import re
|
13 |
-
|
14 |
-
batch_count = 1
|
15 |
-
batch_size = 1
|
16 |
-
|
17 |
-
i2i_batch_count = 1
|
18 |
-
i2i_batch_size = 1
|
19 |
-
|
20 |
-
class Prodia:
|
21 |
-
def __init__(self, api_key, base=None):
|
22 |
-
self.base = base or "https://api.prodia.com/v1"
|
23 |
-
self.headers = {
|
24 |
-
"X-Prodia-Key": api_key
|
25 |
-
}
|
26 |
-
|
27 |
-
def generate(self, params):
|
28 |
-
response = self._post(f"{self.base}/sd/generate", params)
|
29 |
-
return response.json()
|
30 |
-
|
31 |
-
def transform(self, params):
|
32 |
-
response = self._post(f"{self.base}/sd/transform", params)
|
33 |
-
return response.json()
|
34 |
-
|
35 |
-
def controlnet(self, params):
|
36 |
-
response = self._post(f"{self.base}/sd/controlnet", params)
|
37 |
-
return response.json()
|
38 |
-
|
39 |
-
def get_job(self, job_id):
|
40 |
-
response = self._get(f"{self.base}/job/{job_id}")
|
41 |
-
return response.json()
|
42 |
-
|
43 |
-
def wait(self, job):
|
44 |
-
job_result = job
|
45 |
-
|
46 |
-
while job_result['status'] not in ['succeeded', 'failed']:
|
47 |
-
time.sleep(0.25)
|
48 |
-
job_result = self.get_job(job['job'])
|
49 |
-
|
50 |
-
return job_result
|
51 |
-
|
52 |
-
def list_models(self):
|
53 |
-
response = self._get(f"{self.base}/sd/models")
|
54 |
-
return response.json()
|
55 |
-
|
56 |
-
def list_samplers(self):
|
57 |
-
response = self._get(f"{self.base}/sd/samplers")
|
58 |
-
return response.json()
|
59 |
-
|
60 |
-
def _post(self, url, params):
|
61 |
-
headers = {
|
62 |
-
**self.headers,
|
63 |
-
"Content-Type": "application/json"
|
64 |
-
}
|
65 |
-
response = requests.post(url, headers=headers, data=json.dumps(params))
|
66 |
-
|
67 |
-
if response.status_code != 200:
|
68 |
-
raise Exception(f"Bad Prodia Response: {response.status_code}")
|
69 |
-
|
70 |
-
return response
|
71 |
-
|
72 |
-
def _get(self, url):
|
73 |
-
response = requests.get(url, headers=self.headers)
|
74 |
-
|
75 |
-
if response.status_code != 200:
|
76 |
-
raise Exception(f"Bad Prodia Response: {response.status_code}")
|
77 |
-
|
78 |
-
return response
|
79 |
-
|
80 |
-
|
81 |
-
def image_to_base64(image):
|
82 |
-
# Convert the image to bytes
|
83 |
-
buffered = BytesIO()
|
84 |
-
image.save(buffered, format="PNG") # You can change format to PNG if needed
|
85 |
-
|
86 |
-
# Encode the bytes to base64
|
87 |
-
img_str = base64.b64encode(buffered.getvalue())
|
88 |
-
|
89 |
-
return img_str.decode('utf-8') # Convert bytes to string
|
90 |
-
|
91 |
-
def remove_id_and_ext(text):
|
92 |
-
text = re.sub(r'\[.*\]$', '', text)
|
93 |
-
extension = text[-12:].strip()
|
94 |
-
if extension == "safetensors":
|
95 |
-
text = text[:-13]
|
96 |
-
elif extension == "ckpt":
|
97 |
-
text = text[:-4]
|
98 |
-
return text
|
99 |
-
|
100 |
-
def get_data(text):
|
101 |
-
results = {}
|
102 |
-
patterns = {
|
103 |
-
'prompt': r'(.*)',
|
104 |
-
'negative_prompt': r'Negative prompt: (.*)',
|
105 |
-
'steps': r'Steps: (\d+),',
|
106 |
-
'seed': r'Seed: (\d+),',
|
107 |
-
'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
|
108 |
-
'model': r'Model:\s*([^\s,]+)',
|
109 |
-
'cfg_scale': r'CFG scale:\s*([\d\.]+)',
|
110 |
-
'size': r'Size:\s*([0-9]+x[0-9]+)'
|
111 |
-
}
|
112 |
-
for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']:
|
113 |
-
match = re.search(patterns[key], text)
|
114 |
-
if match:
|
115 |
-
results[key] = match.group(1)
|
116 |
-
else:
|
117 |
-
results[key] = None
|
118 |
-
if results['size'] is not None:
|
119 |
-
w, h = results['size'].split("x")
|
120 |
-
results['w'] = w
|
121 |
-
results['h'] = h
|
122 |
-
else:
|
123 |
-
results['w'] = None
|
124 |
-
results['h'] = None
|
125 |
-
return results
|
126 |
-
|
127 |
-
def send_to_txt2img(image):
|
128 |
-
|
129 |
-
result = {tabs: gr.Tabs.update(selected="t2i")}
|
130 |
-
|
131 |
-
try:
|
132 |
-
text = image.info['parameters']
|
133 |
-
data = get_data(text)
|
134 |
-
result[prompt] = gr.update(value=data['prompt'])
|
135 |
-
result[negative_prompt] = gr.update(value=data['negative_prompt']) if data['negative_prompt'] is not None else gr.update()
|
136 |
-
result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update()
|
137 |
-
result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
|
138 |
-
result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
|
139 |
-
result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update()
|
140 |
-
result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update()
|
141 |
-
result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update()
|
142 |
-
if model in model_names:
|
143 |
-
result[model] = gr.update(value=model_names[model])
|
144 |
-
else:
|
145 |
-
result[model] = gr.update()
|
146 |
-
return result
|
147 |
-
|
148 |
-
except Exception as e:
|
149 |
-
print(e)
|
150 |
-
result[prompt] = gr.update()
|
151 |
-
result[negative_prompt] = gr.update()
|
152 |
-
result[steps] = gr.update()
|
153 |
-
result[seed] = gr.update()
|
154 |
-
result[cfg_scale] = gr.update()
|
155 |
-
result[width] = gr.update()
|
156 |
-
result[height] = gr.update()
|
157 |
-
result[sampler] = gr.update()
|
158 |
-
result[model] = gr.update()
|
159 |
-
|
160 |
-
return result
|
161 |
-
|
162 |
-
|
163 |
-
prodia_client = Prodia(api_key=os.getenv("super_api_key"))
|
164 |
-
model_list = prodia_client.list_models()
|
165 |
-
model_names = {}
|
166 |
-
|
167 |
-
for model_name in model_list:
|
168 |
-
name_without_ext = remove_id_and_ext(model_name)
|
169 |
-
model_names[name_without_ext] = model_name
|
170 |
-
|
171 |
-
def txt2img(prompt, negative_prompt, model, width, height):
|
172 |
-
result = prodia_client.generate({
|
173 |
-
"prompt": prompt,
|
174 |
-
"negative_prompt": negative_prompt,
|
175 |
-
"model": model,
|
176 |
-
"steps": 30,
|
177 |
-
"sampler": "DPM++ SDE",
|
178 |
-
"cfg_scale": 7,
|
179 |
-
"width": width,
|
180 |
-
"height": height,
|
181 |
-
"seed": -1
|
182 |
-
})
|
183 |
-
|
184 |
-
job = prodia_client.wait(result)
|
185 |
-
|
186 |
-
return job["imageUrl"]
|
187 |
-
|
188 |
-
def img2img(input_image, denoising, prompt, negative_prompt, model, width, height):
|
189 |
-
result = prodia_client.transform({
|
190 |
-
"imageData": image_to_base64(input_image),
|
191 |
-
"denoising_strength": denoising,
|
192 |
-
"prompt": prompt,
|
193 |
-
"negative_prompt": negative_prompt,
|
194 |
-
"model": i2i_model.value,
|
195 |
-
"steps": 30,
|
196 |
-
"sampler": "DPM++ SDE",
|
197 |
-
"cfg_scale": 7,
|
198 |
-
"width": width,
|
199 |
-
"height": height,
|
200 |
-
"seed": -1
|
201 |
-
})
|
202 |
-
|
203 |
-
job = prodia_client.wait(result)
|
204 |
-
|
205 |
-
return job["imageUrl"]
|
206 |
-
|
207 |
-
|
208 |
-
css = """
|
209 |
-
#generate {
|
210 |
-
height: 100%;
|
211 |
-
}
|
212 |
-
"""
|
213 |
-
|
214 |
-
with gr.Blocks(css=css, theme="Base") as demo:
|
215 |
-
gr.HTML(value="<h1><center>🥏 DreamDrop</center></h1>")
|
216 |
-
with gr.Tabs() as tabs:
|
217 |
-
with gr.Tab("Text to Image", id='t2i'):
|
218 |
-
with gr.Row():
|
219 |
-
with gr.Column(scale=6, min_width=600):
|
220 |
-
prompt = gr.Textbox(label="Prompt", placeholder="a cute cat, 8k", lines=2)
|
221 |
-
negative_prompt = gr.Textbox(label="Negative Prompt", value="text, blurry, fuzziness", lines=1)
|
222 |
-
with gr.Column():
|
223 |
-
text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
224 |
-
|
225 |
-
with gr.Row():
|
226 |
-
with gr.Column(scale=2):
|
227 |
-
image_output = gr.Image(label="Result Image")
|
228 |
-
with gr.Row():
|
229 |
-
with gr.Accordion("⚙️ Settings", open=False):
|
230 |
-
with gr.Column(scale=1):
|
231 |
-
model = gr.Dropdown(interactive=True, value="absolutereality_v181.safetensors [3d9d4d2b]",
|
232 |
-
show_label=True, label="Model",
|
233 |
-
choices=prodia_client.list_models())
|
234 |
-
width = gr.Slider(label="↔️ Width", maximum=1024, value=768, step=8)
|
235 |
-
height = gr.Slider(label="↕️ Height", maximum=1024, value=768, step=8)
|
236 |
-
text_button.click(txt2img, inputs=[prompt, negative_prompt, model, width, height], outputs=image_output)
|
237 |
-
|
238 |
-
with gr.Tab("Image to Image", id='i2i'):
|
239 |
-
with gr.Row():
|
240 |
-
with gr.Column(scale=6, min_width=600):
|
241 |
-
i2i_prompt = gr.Textbox(label="Prompt", placeholder="a cute cat, 8k", lines=2)
|
242 |
-
i2i_negative_prompt = gr.Textbox(label="Negative Prompt", lines=1, value="text, blurry, fuzziness")
|
243 |
-
with gr.Column():
|
244 |
-
i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
245 |
-
|
246 |
-
with gr.Row():
|
247 |
-
with gr.Column(scale=3):
|
248 |
-
i2i_image_input = gr.Image(label="Input Image", type="pil")
|
249 |
-
|
250 |
-
with gr.Column(scale=2):
|
251 |
-
i2i_image_output = gr.Image(label="Result Image")
|
252 |
-
with gr.Row():
|
253 |
-
with gr.Accordion("⚙️ Settings", open=False):
|
254 |
-
with gr.Column(scale=1):
|
255 |
-
i2i_model = gr.Dropdown(interactive=True,
|
256 |
-
value="absolutereality_v181.safetensors [3d9d4d2b]",
|
257 |
-
show_label=True, label="Model",
|
258 |
-
choices=prodia_client.list_models())
|
259 |
-
|
260 |
-
with gr.Column(scale=1):
|
261 |
-
i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1)
|
262 |
-
with gr.Column(scale=1):
|
263 |
-
i2i_width = gr.Slider(label="↔️ Width", maximum=1024, value=768, step=8)
|
264 |
-
i2i_height = gr.Slider(label="↕️ Height", maximum=1024, value=768, step=8)
|
265 |
-
|
266 |
-
i2i_text_button.click(img2img, inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt, model, i2i_width, i2i_height], outputs=i2i_image_output)
|
267 |
-
|
268 |
-
|
269 |
-
demo.queue(concurrency_count=64, max_size=30, api_open=False).launch(max_threads=256, show_api=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|