Commit
·
edc1c57
1
Parent(s):
ffb6a5b
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,269 +0,0 @@
|
|
| 1 |
-
import numpy as np
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import requests
|
| 4 |
-
import time
|
| 5 |
-
import json
|
| 6 |
-
import base64
|
| 7 |
-
import os
|
| 8 |
-
from io import BytesIO
|
| 9 |
-
import PIL
|
| 10 |
-
from PIL.ExifTags import TAGS
|
| 11 |
-
import html
|
| 12 |
-
import re
|
| 13 |
-
|
| 14 |
-
batch_count = 1
|
| 15 |
-
batch_size = 1
|
| 16 |
-
|
| 17 |
-
i2i_batch_count = 1
|
| 18 |
-
i2i_batch_size = 1
|
| 19 |
-
|
| 20 |
-
class Prodia:
|
| 21 |
-
def __init__(self, api_key, base=None):
|
| 22 |
-
self.base = base or "https://api.prodia.com/v1"
|
| 23 |
-
self.headers = {
|
| 24 |
-
"X-Prodia-Key": api_key
|
| 25 |
-
}
|
| 26 |
-
|
| 27 |
-
def generate(self, params):
|
| 28 |
-
response = self._post(f"{self.base}/sd/generate", params)
|
| 29 |
-
return response.json()
|
| 30 |
-
|
| 31 |
-
def transform(self, params):
|
| 32 |
-
response = self._post(f"{self.base}/sd/transform", params)
|
| 33 |
-
return response.json()
|
| 34 |
-
|
| 35 |
-
def controlnet(self, params):
|
| 36 |
-
response = self._post(f"{self.base}/sd/controlnet", params)
|
| 37 |
-
return response.json()
|
| 38 |
-
|
| 39 |
-
def get_job(self, job_id):
|
| 40 |
-
response = self._get(f"{self.base}/job/{job_id}")
|
| 41 |
-
return response.json()
|
| 42 |
-
|
| 43 |
-
def wait(self, job):
|
| 44 |
-
job_result = job
|
| 45 |
-
|
| 46 |
-
while job_result['status'] not in ['succeeded', 'failed']:
|
| 47 |
-
time.sleep(0.25)
|
| 48 |
-
job_result = self.get_job(job['job'])
|
| 49 |
-
|
| 50 |
-
return job_result
|
| 51 |
-
|
| 52 |
-
def list_models(self):
|
| 53 |
-
response = self._get(f"{self.base}/sd/models")
|
| 54 |
-
return response.json()
|
| 55 |
-
|
| 56 |
-
def list_samplers(self):
|
| 57 |
-
response = self._get(f"{self.base}/sd/samplers")
|
| 58 |
-
return response.json()
|
| 59 |
-
|
| 60 |
-
def _post(self, url, params):
|
| 61 |
-
headers = {
|
| 62 |
-
**self.headers,
|
| 63 |
-
"Content-Type": "application/json"
|
| 64 |
-
}
|
| 65 |
-
response = requests.post(url, headers=headers, data=json.dumps(params))
|
| 66 |
-
|
| 67 |
-
if response.status_code != 200:
|
| 68 |
-
raise Exception(f"Bad Prodia Response: {response.status_code}")
|
| 69 |
-
|
| 70 |
-
return response
|
| 71 |
-
|
| 72 |
-
def _get(self, url):
|
| 73 |
-
response = requests.get(url, headers=self.headers)
|
| 74 |
-
|
| 75 |
-
if response.status_code != 200:
|
| 76 |
-
raise Exception(f"Bad Prodia Response: {response.status_code}")
|
| 77 |
-
|
| 78 |
-
return response
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
def image_to_base64(image):
|
| 82 |
-
# Convert the image to bytes
|
| 83 |
-
buffered = BytesIO()
|
| 84 |
-
image.save(buffered, format="PNG") # You can change format to PNG if needed
|
| 85 |
-
|
| 86 |
-
# Encode the bytes to base64
|
| 87 |
-
img_str = base64.b64encode(buffered.getvalue())
|
| 88 |
-
|
| 89 |
-
return img_str.decode('utf-8') # Convert bytes to string
|
| 90 |
-
|
| 91 |
-
def remove_id_and_ext(text):
|
| 92 |
-
text = re.sub(r'\[.*\]$', '', text)
|
| 93 |
-
extension = text[-12:].strip()
|
| 94 |
-
if extension == "safetensors":
|
| 95 |
-
text = text[:-13]
|
| 96 |
-
elif extension == "ckpt":
|
| 97 |
-
text = text[:-4]
|
| 98 |
-
return text
|
| 99 |
-
|
| 100 |
-
def get_data(text):
|
| 101 |
-
results = {}
|
| 102 |
-
patterns = {
|
| 103 |
-
'prompt': r'(.*)',
|
| 104 |
-
'negative_prompt': r'Negative prompt: (.*)',
|
| 105 |
-
'steps': r'Steps: (\d+),',
|
| 106 |
-
'seed': r'Seed: (\d+),',
|
| 107 |
-
'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
|
| 108 |
-
'model': r'Model:\s*([^\s,]+)',
|
| 109 |
-
'cfg_scale': r'CFG scale:\s*([\d\.]+)',
|
| 110 |
-
'size': r'Size:\s*([0-9]+x[0-9]+)'
|
| 111 |
-
}
|
| 112 |
-
for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']:
|
| 113 |
-
match = re.search(patterns[key], text)
|
| 114 |
-
if match:
|
| 115 |
-
results[key] = match.group(1)
|
| 116 |
-
else:
|
| 117 |
-
results[key] = None
|
| 118 |
-
if results['size'] is not None:
|
| 119 |
-
w, h = results['size'].split("x")
|
| 120 |
-
results['w'] = w
|
| 121 |
-
results['h'] = h
|
| 122 |
-
else:
|
| 123 |
-
results['w'] = None
|
| 124 |
-
results['h'] = None
|
| 125 |
-
return results
|
| 126 |
-
|
| 127 |
-
def send_to_txt2img(image):
|
| 128 |
-
|
| 129 |
-
result = {tabs: gr.Tabs.update(selected="t2i")}
|
| 130 |
-
|
| 131 |
-
try:
|
| 132 |
-
text = image.info['parameters']
|
| 133 |
-
data = get_data(text)
|
| 134 |
-
result[prompt] = gr.update(value=data['prompt'])
|
| 135 |
-
result[negative_prompt] = gr.update(value=data['negative_prompt']) if data['negative_prompt'] is not None else gr.update()
|
| 136 |
-
result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update()
|
| 137 |
-
result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
|
| 138 |
-
result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
|
| 139 |
-
result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update()
|
| 140 |
-
result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update()
|
| 141 |
-
result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update()
|
| 142 |
-
if model in model_names:
|
| 143 |
-
result[model] = gr.update(value=model_names[model])
|
| 144 |
-
else:
|
| 145 |
-
result[model] = gr.update()
|
| 146 |
-
return result
|
| 147 |
-
|
| 148 |
-
except Exception as e:
|
| 149 |
-
print(e)
|
| 150 |
-
result[prompt] = gr.update()
|
| 151 |
-
result[negative_prompt] = gr.update()
|
| 152 |
-
result[steps] = gr.update()
|
| 153 |
-
result[seed] = gr.update()
|
| 154 |
-
result[cfg_scale] = gr.update()
|
| 155 |
-
result[width] = gr.update()
|
| 156 |
-
result[height] = gr.update()
|
| 157 |
-
result[sampler] = gr.update()
|
| 158 |
-
result[model] = gr.update()
|
| 159 |
-
|
| 160 |
-
return result
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
prodia_client = Prodia(api_key=os.getenv("super_api_key"))
|
| 164 |
-
model_list = prodia_client.list_models()
|
| 165 |
-
model_names = {}
|
| 166 |
-
|
| 167 |
-
for model_name in model_list:
|
| 168 |
-
name_without_ext = remove_id_and_ext(model_name)
|
| 169 |
-
model_names[name_without_ext] = model_name
|
| 170 |
-
|
| 171 |
-
def txt2img(prompt, negative_prompt, model, width, height):
|
| 172 |
-
result = prodia_client.generate({
|
| 173 |
-
"prompt": prompt,
|
| 174 |
-
"negative_prompt": negative_prompt,
|
| 175 |
-
"model": model,
|
| 176 |
-
"steps": 30,
|
| 177 |
-
"sampler": "DPM++ SDE",
|
| 178 |
-
"cfg_scale": 7,
|
| 179 |
-
"width": width,
|
| 180 |
-
"height": height,
|
| 181 |
-
"seed": -1
|
| 182 |
-
})
|
| 183 |
-
|
| 184 |
-
job = prodia_client.wait(result)
|
| 185 |
-
|
| 186 |
-
return job["imageUrl"]
|
| 187 |
-
|
| 188 |
-
def img2img(input_image, denoising, prompt, negative_prompt, model, width, height):
|
| 189 |
-
result = prodia_client.transform({
|
| 190 |
-
"imageData": image_to_base64(input_image),
|
| 191 |
-
"denoising_strength": denoising,
|
| 192 |
-
"prompt": prompt,
|
| 193 |
-
"negative_prompt": negative_prompt,
|
| 194 |
-
"model": i2i_model.value,
|
| 195 |
-
"steps": 30,
|
| 196 |
-
"sampler": "DPM++ SDE",
|
| 197 |
-
"cfg_scale": 7,
|
| 198 |
-
"width": width,
|
| 199 |
-
"height": height,
|
| 200 |
-
"seed": -1
|
| 201 |
-
})
|
| 202 |
-
|
| 203 |
-
job = prodia_client.wait(result)
|
| 204 |
-
|
| 205 |
-
return job["imageUrl"]
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
css = """
|
| 209 |
-
#generate {
|
| 210 |
-
height: 100%;
|
| 211 |
-
}
|
| 212 |
-
"""
|
| 213 |
-
|
| 214 |
-
with gr.Blocks(css=css, theme="Base") as demo:
|
| 215 |
-
gr.HTML(value="<h1><center>🥏 DreamDrop</center></h1>")
|
| 216 |
-
with gr.Tabs() as tabs:
|
| 217 |
-
with gr.Tab("Text to Image", id='t2i'):
|
| 218 |
-
with gr.Row():
|
| 219 |
-
with gr.Column(scale=6, min_width=600):
|
| 220 |
-
prompt = gr.Textbox(label="Prompt", placeholder="a cute cat, 8k", lines=2)
|
| 221 |
-
negative_prompt = gr.Textbox(label="Negative Prompt", value="text, blurry, fuzziness", lines=1)
|
| 222 |
-
with gr.Column():
|
| 223 |
-
text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
| 224 |
-
|
| 225 |
-
with gr.Row():
|
| 226 |
-
with gr.Column(scale=2):
|
| 227 |
-
image_output = gr.Image(label="Result Image")
|
| 228 |
-
with gr.Row():
|
| 229 |
-
with gr.Accordion("⚙️ Settings", open=False):
|
| 230 |
-
with gr.Column(scale=1):
|
| 231 |
-
model = gr.Dropdown(interactive=True, value="absolutereality_v181.safetensors [3d9d4d2b]",
|
| 232 |
-
show_label=True, label="Model",
|
| 233 |
-
choices=prodia_client.list_models())
|
| 234 |
-
width = gr.Slider(label="↔️ Width", maximum=1024, value=768, step=8)
|
| 235 |
-
height = gr.Slider(label="↕️ Height", maximum=1024, value=768, step=8)
|
| 236 |
-
text_button.click(txt2img, inputs=[prompt, negative_prompt, model, width, height], outputs=image_output)
|
| 237 |
-
|
| 238 |
-
with gr.Tab("Image to Image", id='i2i'):
|
| 239 |
-
with gr.Row():
|
| 240 |
-
with gr.Column(scale=6, min_width=600):
|
| 241 |
-
i2i_prompt = gr.Textbox(label="Prompt", placeholder="a cute cat, 8k", lines=2)
|
| 242 |
-
i2i_negative_prompt = gr.Textbox(label="Negative Prompt", lines=1, value="text, blurry, fuzziness")
|
| 243 |
-
with gr.Column():
|
| 244 |
-
i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
| 245 |
-
|
| 246 |
-
with gr.Row():
|
| 247 |
-
with gr.Column(scale=3):
|
| 248 |
-
i2i_image_input = gr.Image(label="Input Image", type="pil")
|
| 249 |
-
|
| 250 |
-
with gr.Column(scale=2):
|
| 251 |
-
i2i_image_output = gr.Image(label="Result Image")
|
| 252 |
-
with gr.Row():
|
| 253 |
-
with gr.Accordion("⚙️ Settings", open=False):
|
| 254 |
-
with gr.Column(scale=1):
|
| 255 |
-
i2i_model = gr.Dropdown(interactive=True,
|
| 256 |
-
value="absolutereality_v181.safetensors [3d9d4d2b]",
|
| 257 |
-
show_label=True, label="Model",
|
| 258 |
-
choices=prodia_client.list_models())
|
| 259 |
-
|
| 260 |
-
with gr.Column(scale=1):
|
| 261 |
-
i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1)
|
| 262 |
-
with gr.Column(scale=1):
|
| 263 |
-
i2i_width = gr.Slider(label="↔️ Width", maximum=1024, value=768, step=8)
|
| 264 |
-
i2i_height = gr.Slider(label="↕️ Height", maximum=1024, value=768, step=8)
|
| 265 |
-
|
| 266 |
-
i2i_text_button.click(img2img, inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt, model, i2i_width, i2i_height], outputs=i2i_image_output)
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
demo.queue(concurrency_count=64, max_size=30, api_open=False).launch(max_threads=256, show_api=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|