File size: 6,757 Bytes
eb7d6fd
 
 
 
 
 
0b0fa8e
eb7d6fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db081ea
eb7d6fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9850179
eb7d6fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4886c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import gradio as gr
import librosa
import numpy as np
import torch
import pyewts
import noisereduce as nr
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
def remove_repeated_words(text):
    # Tokenize the input text into words
    words = text.split()

    # Create a dictionary to count word occurrences
    word_count = {}

    # Create a list to store the final words
    new_words = []

    for word in words:
        # Check if the word is in the dictionary
        if word in word_count:
            # If it has occurred once before, add it to the list with a count of 2
            if word_count[word] == 1:
                new_words.append(word)
                word_count[word] = 2
        else:
            # If it has not occurred before, add it to the dictionary with a count of 1
            word_count[word] = 1
            new_words.append(word)

    # Join the modified words back into a string
    result = ' '.join(new_words)
    return result


converter = pyewts.pyewts()
checkpoint = "TenzinGayche/TTS_run3_ep20_174k_b"
processor = SpeechT5Processor.from_pretrained(checkpoint)
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
model.to('cuda')
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")


speaker_embeddings = {
    "Lhasa(female)": "female_2.npy",

}

replacements = [
    ('_', '_'),
    ('*', 'v'),
    ('`', ';'),
    ('~', ','),
    ('+', ','),
    ('\\', ';'),
    ('|', ';'),
    ('╚',''),
    ('╗','')
]
def cleanup_text(inputs):
    for src, dst in replacements:
        inputs = inputs.replace(src, dst)
    return inputs
def predict(text, speaker):
    if len(text.strip()) == 0:
        return (16000, np.zeros(0).astype(np.int16))
    text = converter.toWylie(text)
    text=cleanup_text(text)
    inputs = processor(text=text, return_tensors="pt")
    # limit input length
    input_ids = inputs["input_ids"]
    input_ids = input_ids[..., :model.config.max_text_positions]
    speaker_embedding = np.load(speaker_embeddings[speaker])
    speaker_embedding = torch.tensor(speaker_embedding)
    speech = model.generate_speech(input_ids.to('cuda'), speaker_embedding.to('cuda'), vocoder=vocoder.to('cuda'))
    speech = nr.reduce_noise(y=speech.to('cpu'), sr=16000)
    return (16000, speech)


title = "Tibetan TTS"

description = """
The <b>SpeechT5</b> model is pre-trained on text as well as speech inputs, with targets that are also a mix of text and speech.
By pre-training on text and speech at the same time, it learns unified representations for both, resulting in improved modeling capabilities.
"""
article = """
<div style='margin:20px auto;'>
<p>References: <a href="https://arxiv.org/abs/2110.07205">SpeechT5 paper</a> |
<a href="https://github.com/microsoft/SpeechT5/">original GitHub</a> |
<a href="https://huggingface.co/mechanicalsea/speecht5-tts">original weights</a></p>
<pre>
@article{Ao2021SpeechT5,
  title   = {SpeechT5: Unified-Modal Encoder-Decoder Pre-training for Spoken Language Processing},
  author  = {Junyi Ao and Rui Wang and Long Zhou and Chengyi Wang and Shuo Ren and Yu Wu and Shujie Liu and Tom Ko and Qing Li and Yu Zhang and Zhihua Wei and Yao Qian and Jinyu Li and Furu Wei},
  eprint={2110.07205},
  archivePrefix={arXiv},
  primaryClass={eess.AS},
  year={2021}
}
</pre>
<p>Speaker embeddings were generated from <a href="http://www.festvox.org/cmu_arctic/">CMU ARCTIC</a> using <a href="https://huggingface.co/mechanicalsea/speecht5-vc/blob/main/manifest/utils/prep_cmu_arctic_spkemb.py">this script</a>.</p>
</div>
"""

examples = [
    ["ད་དེ་ཚོ་འདི་བྱེད་དགོས་རེད་ ན་ཚ་ མ་ཡོང་སྔོན་ལ་ཁོ་རང་ལ་ཡང་ཁྱི་ཁོ་རང་ཁོ་ལ་ཡང་ཁབ་རྒྱག་ཡ་ཡོད་རེད། ཨུན་སྔོན་འགོག་དང་རཱབྷིསས་ཁབ་རྒྱག་ཡ་ཡོད་རེད་ད།", "Lhasa(female)"],
    ["སྟོབས་ཆེན་རྒྱལ་ཁབ་ཉི་ཤུའི་ལྷན་ཚོགས་ཐོག་ལ་རྒྱ་ནག་གཞུང་གིས་བོད་ནང་རིག་གཞུང་རྩ་གཏོར་ཀྱི་སྲིད་བྱུས་ཁག་དཔར་རིས་ཐོག་ནས་ལས་འགུལ་སྤེལ་བའི་སྐོར  འཇམ་དབྱངས་རྒྱ་མཚོ་ལགས་ཀྱིས་སྙན་སྒྲོན་གནང་གི་རེད།", "Lhasa(female)"],
    ["དངོས་གནས་ལབ་དགོས་རཱ་ད། མི་དབུལ་པོ་དེ་ཚོ་ལ་ག་རེ་ལབ་དགོས་རེད། སྦྱིན་པ་གཏང་ཡ་ཡོད་རཱ། ཨུན། དེ་འདྲ་གི་ལས་འགུལ་དེ་འདྲའི་མང་པོ་བརྩམས་ཀི་འདུག་བ། དེ་ཚོ་ཡང་ངས་ཚད་ལས་བརྒལ་བའི་ཡག་པོ་རེད་དྲན་གི་འདུག། ", "Lhasa(female)"],
    ["ཁོང་རྣམ་པ་ནི་སྤྱིར་བཏང་གི་གང་ཟག་ཅིག་མ་ཡིན་པར་མི་རབས་ནས་མི་རབས་རྒྱུད་པ་འཛིན་པའི་ནོར་བུ་ཡིན་ཞིང་། ", "Lhasa(female)"],
    ["ཨ་ལེ།  ཨེ་ནས་སྤྱིར་བཏང་ད་ང་ཚོ་ད་ལྟ་ཁྱེད་རང་གིས་དམིགས་ཡུལ་ད་གལ་ཆེན་པོ་བརྩིས་ནས།", "Lhasa(female)"],
    ["འཕགས་པ་ཐུགས་རྗེ་ཆེན་པོ་སྤྲུལ་པའི་རྒྱལ་པོའི་ཚུལ་བཟུང།།", "Lhasa(female)"],
    ["ད་དེ་ཚོ་འདི་བྱེད་དགོས་རེད་ ན་ཚ་ མ་ཡོང་སྔོན་ལ་ཁོ་རང་ལ་ཡང་ཁྱི་ཁོ་རང་ཁོ་ལ་ཡང་ཁབ་རྒྱག་ཡ་ཡོད་རེད། ཨུན་སྔོན་འགོག་དང་རཱབྷིསས་ཁབ་རྒྱག་ཡ་ཡོད་རེད་ད།", "Lhasa(female)"],
]
gr.Interface(
    fn=predict,
    inputs=[
        gr.Text(label="Input Text"),
        gr.Radio(label="Speaker", choices=[
            "Lhasa(female)",

        ],
        value="Lhasa(female)"),
    ],
    outputs=[
        gr.Audio(label="Generated Speech", type="numpy"),
    ],
    title=title,
    description=description,
    article=article,
    examples=examples,
).launch()