|
from transformers import AutoModel, AutoTokenizer
|
|
from copy import deepcopy
|
|
import gradio as gr
|
|
import mdtex2html
|
|
from model.openlamm import LAMMPEFTModel
|
|
import torch
|
|
import json
|
|
|
|
|
|
args = {
|
|
'model': 'openllama_peft',
|
|
'imagebind_ckpt_path': '../model_zoo/imagebind_ckpt',
|
|
'vicuna_ckpt_path': './pretrained_ckpt/llm_7b_v0',
|
|
'delta_ckpt_path': './pretrained_ckpt/llm7b_lora32_lamm186k/pytorch_model.pt',
|
|
'stage': 2,
|
|
'max_tgt_len': 128,
|
|
'lora_r': 32,
|
|
'lora_alpha': 32,
|
|
'lora_dropout': 0.1,
|
|
'lora_target_modules': ['q_proj', 'k_proj', 'v_proj', 'o_proj'],
|
|
'vision_type': 'image',
|
|
'vision_feature_type': 'local',
|
|
'num_vision_token': 256,
|
|
'encoder_pretrain': 'clip',
|
|
'system_header': True,
|
|
}
|
|
|
|
model = LAMMPEFTModel(**args)
|
|
delta_ckpt = torch.load(args['delta_ckpt_path'], map_location=torch.device('cpu'))
|
|
model.load_state_dict(delta_ckpt, strict=False)
|
|
model = model.eval().half().cuda()
|
|
print(f'[!] init the 13b model over ...')
|
|
|
|
"""Override Chatbot.postprocess"""
|
|
|
|
|
|
def postprocess(self, y):
|
|
if y is None:
|
|
return []
|
|
for i, (message, response) in enumerate(y):
|
|
y[i] = (
|
|
None if message is None else mdtex2html.convert((message)),
|
|
None if response is None else mdtex2html.convert(response),
|
|
)
|
|
return y
|
|
|
|
|
|
gr.Chatbot.postprocess = postprocess
|
|
|
|
|
|
def parse_text(text):
|
|
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
|
|
lines = text.split("\n")
|
|
lines = [line for line in lines if line != ""]
|
|
count = 0
|
|
for i, line in enumerate(lines):
|
|
if "```" in line:
|
|
count += 1
|
|
items = line.split('`')
|
|
if count % 2 == 1:
|
|
lines[i] = f'<pre><code class="language-{items[-1]}">'
|
|
else:
|
|
lines[i] = f'<br></code></pre>'
|
|
else:
|
|
if i > 0:
|
|
if count % 2 == 1:
|
|
line = line.replace("`", "\`")
|
|
line = line.replace("<", "<")
|
|
line = line.replace(">", ">")
|
|
line = line.replace(" ", " ")
|
|
line = line.replace("*", "*")
|
|
line = line.replace("_", "_")
|
|
line = line.replace("-", "-")
|
|
line = line.replace(".", ".")
|
|
line = line.replace("!", "!")
|
|
line = line.replace("(", "(")
|
|
line = line.replace(")", ")")
|
|
line = line.replace("$", "$")
|
|
lines[i] = "<br>"+line
|
|
text = "".join(lines)
|
|
if text.endswith("##"):
|
|
text = text[:-2]
|
|
return text
|
|
|
|
|
|
def re_predict(
|
|
input,
|
|
image_path,
|
|
chatbot,
|
|
max_length,
|
|
top_p,
|
|
temperature,
|
|
history,
|
|
modality_cache,
|
|
):
|
|
|
|
q, a = history.pop()
|
|
chatbot.pop()
|
|
return predict(q, image_path, chatbot, max_length, top_p, temperature, history, modality_cache)
|
|
|
|
|
|
def predict(
|
|
input,
|
|
image_path,
|
|
chatbot,
|
|
max_length,
|
|
top_p,
|
|
temperature,
|
|
history,
|
|
modality_cache,
|
|
):
|
|
if image_path is None:
|
|
return [(input, "There is no input data provided! Please upload your data and start the conversation.")]
|
|
else:
|
|
print(f'[!] image path: {image_path}\n')
|
|
|
|
|
|
prompt_text = ''
|
|
for idx, (q, a) in enumerate(history):
|
|
if idx == 0:
|
|
prompt_text += f'{q}\n### Assistant: {a}\n###'
|
|
else:
|
|
prompt_text += f' Human: {q}\n### Assistant: {a}\n###'
|
|
if len(history) == 0:
|
|
prompt_text += f'{input}'
|
|
else:
|
|
prompt_text += f' Human: {input}'
|
|
|
|
response = model.generate({
|
|
'prompt': [prompt_text] if not isinstance(prompt_text, list) else prompt_text,
|
|
'image_paths': [image_path] if image_path else [],
|
|
'top_p': top_p,
|
|
'temperature': temperature,
|
|
'max_tgt_len': max_length,
|
|
'modality_embeds': modality_cache
|
|
})
|
|
if isinstance(response, list):
|
|
response = response[0]
|
|
chatbot.append((parse_text(input), parse_text(response)))
|
|
history.append((input, response))
|
|
return chatbot, history, modality_cache
|
|
|
|
|
|
def reset_user_input():
|
|
return gr.update(value='')
|
|
|
|
def reset_dialog():
|
|
return [], []
|
|
|
|
def reset_state():
|
|
return None, [], [], []
|
|
|
|
|
|
with gr.Blocks(scale=4) as demo:
|
|
gr.Image("./images/lamm_title.png", show_label=False, height=50)
|
|
gr.HTML(
|
|
"""
|
|
<p>
|
|
<p align="center">
|
|
<font size='4'>
|
|
<a href="https://openlamm.github.io/" target="_blank">🏠 Home Page</a> • <a href="https://github.com/OpenLAMM/LAMM" target="_blank">🌏 Github</a> • <a href="https://arxiv.org/pdf/2306.06687.pdf" target="_blank">📰 Paper</a> • <a href="https://www.youtube.com/watch?v=M7XlIe8hhPk" target="_blank">▶️ YouTube </a> • <a href="https://www.bilibili.com/video/BV1kN411D7kt/?share_source=copy_web&vd_source=ab4c734425ed0114898300f2c037ac0b" target="_blank"> 📺 Bilibili • <a href="https://opendatalab.com/LAMM" target="_blank">📀 Data</a> • <a href="https://huggingface.co/openlamm" target="_blank">📦 LAMM Models</a>
|
|
</font>
|
|
</p>
|
|
</p>
|
|
"""
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Row(scale=1):
|
|
with gr.Column(scale=1):
|
|
image_path = gr.Image(type="filepath", label="Image", value=None).style(height=600)
|
|
|
|
chatbot = gr.Chatbot(scale=1).style(height=600)
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=4):
|
|
with gr.Column(scale=12):
|
|
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(container=False)
|
|
with gr.Column(min_width=32, scale=1):
|
|
with gr.Row(scale=1):
|
|
submitBtn = gr.Button("Submit", variant="primary")
|
|
with gr.Row(scale=1):
|
|
resubmitBtn = gr.Button("Resubmit", variant="primary")
|
|
with gr.Column(scale=1):
|
|
emptyBtn = gr.Button("Clear History")
|
|
max_length = gr.Slider(0, 600, value=256, step=1.0, label="Maximum length", interactive=True)
|
|
top_p = gr.Slider(0, 1, value=0.01, step=0.01, label="Top P", interactive=True)
|
|
temperature = gr.Slider(0, 1, value=0.9, step=0.01, label="Temperature", interactive=True)
|
|
|
|
history = gr.State([])
|
|
modality_cache = gr.State([])
|
|
|
|
submitBtn.click(
|
|
predict, [
|
|
user_input,
|
|
image_path,
|
|
chatbot,
|
|
max_length,
|
|
top_p,
|
|
temperature,
|
|
history,
|
|
modality_cache,
|
|
], [
|
|
chatbot,
|
|
history,
|
|
modality_cache
|
|
],
|
|
show_progress=True
|
|
)
|
|
|
|
resubmitBtn.click(
|
|
re_predict, [
|
|
user_input,
|
|
image_path,
|
|
chatbot,
|
|
max_length,
|
|
top_p,
|
|
temperature,
|
|
history,
|
|
modality_cache,
|
|
], [
|
|
chatbot,
|
|
history,
|
|
modality_cache
|
|
],
|
|
show_progress=True
|
|
)
|
|
|
|
submitBtn.click(reset_user_input, [], [user_input])
|
|
emptyBtn.click(reset_state, outputs=[
|
|
image_path,
|
|
chatbot,
|
|
history,
|
|
modality_cache
|
|
], show_progress=True)
|
|
|
|
demo.queue().launch(enable_queue=True)
|
|
|