import tempfile import time from collections.abc import Sequence from typing import Any, cast import os from huggingface_hub import login, hf_hub_download import gradio as gr import numpy as np import pillow_heif import spaces import torch from gradio_image_annotation import image_annotator from gradio_imageslider import ImageSlider from PIL import Image from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml from refiners.fluxion.utils import no_grad from refiners.solutions import BoxSegmenter from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor from diffusers import FluxPipeline from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM import gc from PIL import Image, ImageDraw, ImageFont def clear_memory(): """메모리 정리 함수""" gc.collect() try: if torch.cuda.is_available(): with torch.cuda.device(0): # 명시적으로 device 0 사용 torch.cuda.empty_cache() except: pass # GPU 설정 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 명시적으로 cuda:0 지정 # GPU 설정을 try-except로 감싸기 if torch.cuda.is_available(): try: with torch.cuda.device(0): torch.cuda.empty_cache() torch.backends.cudnn.benchmark = True torch.backends.cuda.matmul.allow_tf32 = True except: print("Warning: Could not configure CUDA settings") # 번역 모델 초기화 model_name = "Helsinki-NLP/opus-mt-ko-en" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to('cpu') translator = pipeline("translation", model=model, tokenizer=tokenizer, device=-1) def translate_to_english(text: str) -> str: """한글 텍스트를 영어로 번역""" try: if any(ord('가') <= ord(char) <= ord('힣') for char in text): translated = translator(text, max_length=128)[0]['translation_text'] print(f"Translated '{text}' to '{translated}'") return translated return text except Exception as e: print(f"Translation error: {str(e)}") return text BoundingBox = tuple[int, int, int, int] pillow_heif.register_heif_opener() pillow_heif.register_avif_opener() # HF 토큰 설정 HF_TOKEN = os.getenv("HF_TOKEN") if HF_TOKEN is None: raise ValueError("Please set the HF_TOKEN environment variable") try: login(token=HF_TOKEN) except Exception as e: raise ValueError(f"Failed to login to Hugging Face: {str(e)}") # 모델 초기화 segmenter = BoxSegmenter(device="cpu") segmenter.device = device segmenter.model = segmenter.model.to(device=segmenter.device) gd_model_path = "IDEA-Research/grounding-dino-base" gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path) gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32) gd_model = gd_model.to(device=device) assert isinstance(gd_model, GroundingDinoForObjectDetection) # FLUX 파이프라인 초기화 pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16, use_auth_token=HF_TOKEN ) pipe.enable_attention_slicing(slice_size="auto") # LoRA 가중치 로드 pipe.load_lora_weights( hf_hub_download( "ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors", use_auth_token=HF_TOKEN ) ) pipe.fuse_lora(lora_scale=0.125) # GPU 설정을 try-except로 감싸기 try: if torch.cuda.is_available(): pipe = pipe.to("cuda:0") # 명시적으로 cuda:0 지정 except Exception as e: print(f"Warning: Could not move pipeline to CUDA: {str(e)}") class timer: def __init__(self, method_name="timed process"): self.method = method_name def __enter__(self): self.start = time.time() print(f"{self.method} starts") def __exit__(self, exc_type, exc_val, exc_tb): end = time.time() print(f"{self.method} took {str(round(end - self.start, 2))}s") def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None: if not bboxes: return None for bbox in bboxes: assert len(bbox) == 4 assert all(isinstance(x, int) for x in bbox) return ( min(bbox[0] for bbox in bboxes), min(bbox[1] for bbox in bboxes), max(bbox[2] for bbox in bboxes), max(bbox[3] for bbox in bboxes), ) def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor: x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1) return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1) def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None: inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device) with no_grad(): outputs = gd_model(**inputs) width, height = img.size results: dict[str, Any] = gd_processor.post_process_grounded_object_detection( outputs, inputs["input_ids"], target_sizes=[(height, width)], )[0] assert "boxes" in results and isinstance(results["boxes"], torch.Tensor) bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height) return bbox_union(bboxes.numpy().tolist()) def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image: assert img.size == mask_img.size img = img.convert("RGB") mask_img = mask_img.convert("L") if defringe: rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0 foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha)) img = Image.fromarray((foreground * 255).astype("uint8")) result = Image.new("RGBA", img.size) result.paste(img, (0, 0), mask_img) return result def adjust_size_to_multiple_of_8(width: int, height: int) -> tuple[int, int]: """이미지 크기를 8의 배수로 조정하는 함수""" new_width = ((width + 7) // 8) * 8 new_height = ((height + 7) // 8) * 8 return new_width, new_height def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int, int]: """선택된 비율에 따라 이미지 크기 계산""" if aspect_ratio == "1:1": return base_size, base_size elif aspect_ratio == "16:9": return base_size * 16 // 9, base_size elif aspect_ratio == "9:16": return base_size, base_size * 16 // 9 elif aspect_ratio == "4:3": return base_size * 4 // 3, base_size return base_size, base_size @spaces.GPU(duration=20) # 40초에서 20초로 감소 def generate_background(prompt: str, aspect_ratio: str) -> Image.Image: try: width, height = calculate_dimensions(aspect_ratio) width, height = adjust_size_to_multiple_of_8(width, height) max_size = 768 if width > max_size or height > max_size: ratio = max_size / max(width, height) width = int(width * ratio) height = int(height * ratio) width, height = adjust_size_to_multiple_of_8(width, height) with timer("Background generation"): try: with torch.inference_mode(): image = pipe( prompt=prompt, width=width, height=height, num_inference_steps=8, guidance_scale=4.0 ).images[0] except Exception as e: print(f"Pipeline error: {str(e)}") return Image.new('RGB', (width, height), 'white') return image except Exception as e: print(f"Background generation error: {str(e)}") return Image.new('RGB', (512, 512), 'white') def create_position_grid(): return """
""" def calculate_object_position(position: str, bg_size: tuple[int, int], obj_size: tuple[int, int]) -> tuple[int, int]: """오브젝트의 위치 계산""" bg_width, bg_height = bg_size obj_width, obj_height = obj_size positions = { "top-left": (0, 0), "top-center": ((bg_width - obj_width) // 2, 0), "top-right": (bg_width - obj_width, 0), "middle-left": (0, (bg_height - obj_height) // 2), "middle-center": ((bg_width - obj_width) // 2, (bg_height - obj_height) // 2), "middle-right": (bg_width - obj_width, (bg_height - obj_height) // 2), "bottom-left": (0, bg_height - obj_height), "bottom-center": ((bg_width - obj_width) // 2, bg_height - obj_height), "bottom-right": (bg_width - obj_width, bg_height - obj_height) } return positions.get(position, positions["bottom-center"]) def resize_object(image: Image.Image, scale_percent: float) -> Image.Image: """오브젝트 크기 조정""" width = int(image.width * scale_percent / 100) height = int(image.height * scale_percent / 100) return image.resize((width, height), Image.Resampling.LANCZOS) def combine_with_background(foreground: Image.Image, background: Image.Image, position: str = "bottom-center", scale_percent: float = 100) -> Image.Image: """전경과 배경 합성 함수""" # 배경 이미지 준비 result = background.convert('RGBA') # 오브젝트 크기 조정 scaled_foreground = resize_object(foreground, scale_percent) # 오브젝트 위치 계산 x, y = calculate_object_position(position, result.size, scaled_foreground.size) # 합성 result.paste(scaled_foreground, (x, y), scaled_foreground) return result @spaces.GPU(duration=30) # 120초에서 30초로 감소 def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]: time_log: list[str] = [] try: if isinstance(prompt, str): t0 = time.time() bbox = gd_detect(img, prompt) time_log.append(f"detect: {time.time() - t0}") if not bbox: print(time_log[0]) raise gr.Error("No object detected") else: bbox = prompt t0 = time.time() mask = segmenter(img, bbox) time_log.append(f"segment: {time.time() - t0}") return mask, bbox, time_log except Exception as e: print(f"GPU process error: {str(e)}") raise def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]: try: # 입력 이미지 크기 제한 max_size = 1024 if img.width > max_size or img.height > max_size: ratio = max_size / max(img.width, img.height) new_size = (int(img.width * ratio), int(img.height * ratio)) img = img.resize(new_size, Image.LANCZOS) # CUDA 메모리 관리 수정 try: if torch.cuda.is_available(): current_device = torch.cuda.current_device() with torch.cuda.device(current_device): torch.cuda.empty_cache() except Exception as e: print(f"CUDA memory management failed: {e}") with torch.cuda.amp.autocast(enabled=torch.cuda.is_available()): mask, bbox, time_log = _gpu_process(img, prompt) masked_alpha = apply_mask(img, mask, defringe=True) if bg_prompt: background = generate_background(bg_prompt, aspect_ratio) combined = background else: combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha) clear_memory() with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp: combined.save(temp.name) return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True) except Exception as e: clear_memory() print(f"Processing error: {str(e)}") raise gr.Error(f"Processing failed: {str(e)}") def on_change_bbox(prompts: dict[str, Any] | None): return gr.update(interactive=prompts is not None) def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None): return gr.update(interactive=bool(img and prompt)) def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None, aspect_ratio: str = "1:1", position: str = "bottom-center", scale_percent: float = 100, text_params: dict | None = None) -> tuple[Image.Image, Image.Image]: try: if img is None or prompt.strip() == "": raise gr.Error("Please provide both image and prompt") print(f"Processing with position: {position}, scale: {scale_percent}") try: prompt = translate_to_english(prompt) if bg_prompt: bg_prompt = translate_to_english(bg_prompt) except Exception as e: print(f"Translation error (continuing with original text): {str(e)}") # 기존 처리 로직... results, _ = _process(img, prompt, bg_prompt, aspect_ratio) if bg_prompt: try: combined = combine_with_background( foreground=results[2], background=results[1], position=position, scale_percent=scale_percent ) except Exception as e: print(f"Combination error: {str(e)}") combined = results[1] else: combined = results[1] # 텍스트 추가 로직을 여기로 이동 if text_params and text_params.get('text'): combined = add_text_to_image(combined, text_params) return combined, results[2] except Exception as e: print(f"Error in process_prompt: {str(e)}") raise gr.Error(str(e)) finally: clear_memory() def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]: try: if img is None or box_input.strip() == "": raise gr.Error("Please provide both image and bounding box coordinates") try: coords = eval(box_input) if not isinstance(coords, list) or len(coords) != 4: raise ValueError("Invalid box format") bbox = tuple(int(x) for x in coords) except: raise gr.Error("Invalid box format. Please provide [xmin, ymin, xmax, ymax]") # Process the image results, _ = _process(img, bbox) # 합성된 이미지와 추출된 이미지만 반환 return results[1], results[2] except Exception as e: raise gr.Error(str(e)) # Event handler functions 수정 def update_process_button(img, prompt): return gr.update( interactive=bool(img and prompt), variant="primary" if bool(img and prompt) else "secondary" ) def update_box_button(img, box_input): try: if img and box_input: coords = eval(box_input) if isinstance(coords, list) and len(coords) == 4: return gr.update(interactive=True, variant="primary") return gr.update(interactive=False, variant="secondary") except: return gr.update(interactive=False, variant="secondary") # CSS 정의 css = """ footer {display: none} .main-title { text-align: center; margin: 2em 0; padding: 1em; background: #f7f7f7; border-radius: 10px; } .main-title h1 { color: #2196F3; font-size: 2.5em; margin-bottom: 0.5em; } .main-title p { color: #666; font-size: 1.2em; } .container { max-width: 1200px; margin: auto; padding: 20px; } .tabs { margin-top: 1em; } .input-group { background: white; padding: 1em; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); } .output-group { background: white; padding: 1em; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); } button.primary { background: #2196F3; border: none; color: white; padding: 0.5em 1em; border-radius: 4px; cursor: pointer; transition: background 0.3s ease; } button.primary:hover { background: #1976D2; } .position-btn { transition: all 0.3s ease; } .position-btn:hover { background-color: #e3f2fd; } .position-btn.selected { background-color: #2196F3; color: white; } """ def add_text_with_stroke(draw, text, x, y, font, text_color, stroke_width): """텍스트에 외곽선을 추가하는 헬퍼 함수""" for adj_x in range(-stroke_width, stroke_width + 1): for adj_y in range(-stroke_width, stroke_width + 1): draw.text((x + adj_x, y + adj_y), text, font=font, fill=text_color) def add_text_to_image(image, text_params): """이미지에 텍스트를 추가하는 함수""" if not text_params.get('text'): return image if image.mode != 'RGBA': image = image.convert('RGBA') txt_overlay = Image.new('RGBA', image.size, (255, 255, 255, 0)) draw = ImageDraw.Draw(txt_overlay) try: font = ImageFont.truetype("DejaVuSans.ttf", text_params['font_size']) except: try: font = ImageFont.truetype("arial.ttf", text_params['font_size']) except: font = ImageFont.load_default() color_map = { 'White': (255, 255, 255), 'Black': (0, 0, 0), 'Red': (255, 0, 0), 'Green': (0, 255, 0), 'Blue': (0, 0, 255), 'Yellow': (255, 255, 0), 'Purple': (128, 0, 128) } rgb_color = color_map.get(text_params['color'], (255, 255, 255)) text_color = (*rgb_color, text_params['opacity']) text_bbox = draw.textbbox((0, 0), text_params['text'], font=font) text_width = text_bbox[2] - text_bbox[0] text_height = text_bbox[3] - text_bbox[1] x = int((image.width - text_width) * (text_params['x_position'] / 100)) y = int((image.height - text_height) * (text_params['y_position'] / 100)) add_text_with_stroke( draw, text_params['text'], x, y, font, text_color, text_params['thickness'] ) return Image.alpha_composite(image, txt_overlay) # UI 구성 with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: gr.HTML("""

🎨GiniGen Canvas

AI Integrated Image Creator: Extract objects, generate backgrounds, and adjust ratios and positions to create complete images with AI.

""") with gr.Row(): # 입력 컬럼 with gr.Column(scale=1): input_image = gr.Image( type="pil", label="Upload Image", interactive=True ) text_prompt = gr.Textbox( label="Object to Extract", placeholder="Enter what you want to extract...", interactive=True ) # 배경 및 비율 설정 with gr.Row(): bg_prompt = gr.Textbox( label="Background Prompt (optional)", placeholder="Describe the background...", interactive=True, scale=3 ) aspect_ratio = gr.Dropdown( choices=["1:1", "16:9", "9:16", "4:3"], value="1:1", label="Aspect Ratio", interactive=True, visible=True, scale=1 ) # 오브젝트 컨트롤 with gr.Row(visible=False) as object_controls: # 위치 컨트롤 with gr.Column(scale=1): position = gr.State(value="bottom-center") with gr.Row(): btn_top_left = gr.Button("↖") btn_top_center = gr.Button("↑") btn_top_right = gr.Button("↗") with gr.Row(): btn_middle_left = gr.Button("←") btn_middle_center = gr.Button("•") btn_middle_right = gr.Button("→") with gr.Row(): btn_bottom_left = gr.Button("↙") btn_bottom_center = gr.Button("↓") btn_bottom_right = gr.Button("↘") # 크기 컨트롤 with gr.Column(scale=1): scale_slider = gr.Slider( minimum=10, maximum=200, value=50, step=5, label="Object Size (%)" ) # 텍스트 입력 섹션 with gr.Group() as text_group: text_input = gr.Textbox( label="Text to Add", placeholder="Enter text..." ) with gr.Row(): with gr.Column(scale=1): font_size = gr.Slider( minimum=10, maximum=800, value=400, step=10, label="Font Size" ) thickness = gr.Slider( minimum=0, maximum=20, value=0, step=1, label="Text Thickness" ) color_dropdown = gr.Dropdown( choices=["White", "Black", "Red", "Green", "Blue", "Yellow", "Purple"], value="White", label="Text Color" ) with gr.Column(scale=1): opacity_slider = gr.Slider( minimum=0, maximum=255, value=255, step=1, label="Opacity" ) text_x_position = gr.Slider( minimum=0, maximum=100, value=50, step=1, label="Text X Position (%)" ) text_y_position = gr.Slider( minimum=0, maximum=100, value=50, step=1, label="Text Y Position (%)" ) # 처리 버튼 process_btn = gr.Button( "Process", variant="primary", interactive=False ) # 출력 컬럼 with gr.Column(scale=1): combined_image = gr.Image( label="Combined Result", show_download_button=True, type="pil", height=512 ) extracted_image = gr.Image( label="Extracted Object", show_download_button=True, type="pil", height=256 ) # 이벤트 핸들러 def get_text_params(): return { 'text': text_input.value, 'font_size': font_size.value, 'thickness': thickness.value, 'color': color_dropdown.value, 'opacity': opacity_slider.value, 'x_position': text_x_position.value, 'y_position': text_y_position.value } # 위치 버튼 이벤트 for btn, pos in [ (btn_top_left, "top-left"), (btn_top_center, "top-center"), (btn_top_right, "top-right"), (btn_middle_left, "middle-left"), (btn_middle_center, "middle-center"), (btn_middle_right, "middle-right"), (btn_bottom_left, "bottom-left"), (btn_bottom_center, "bottom-center"), (btn_bottom_right, "bottom-right") ]: btn.click(fn=lambda p=pos: p, outputs=position) # 메인 프로세스 이벤트 process_btn.click( fn=process_prompt, inputs=[ input_image, text_prompt, bg_prompt, aspect_ratio, position, scale_slider, gr.State(get_text_params) ], outputs=[combined_image, extracted_image] ) # UI 업데이트 이벤트 input_image.change( fn=update_process_button, inputs=[input_image, text_prompt], outputs=process_btn ) text_prompt.change( fn=update_process_button, inputs=[input_image, text_prompt], outputs=process_btn ) bg_prompt.change( fn=update_controls, inputs=[bg_prompt], outputs=[aspect_ratio, object_controls] ) # 런처 설정 demo.queue(max_size=5) demo.launch( server_name="0.0.0.0", server_port=7860, share=False, max_threads=2 )