Spaces:
Paused
Paused
| import tempfile | |
| import time | |
| from collections.abc import Sequence | |
| from typing import Any, cast | |
| import os | |
| from huggingface_hub import login, hf_hub_download | |
| import gradio as gr | |
| import numpy as np | |
| import pillow_heif | |
| import spaces | |
| import torch | |
| from gradio_image_annotation import image_annotator | |
| from gradio_imageslider import ImageSlider | |
| from PIL import Image | |
| from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml | |
| from refiners.fluxion.utils import no_grad | |
| from refiners.solutions import BoxSegmenter | |
| from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor | |
| from diffusers import FluxPipeline | |
| from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM | |
| import gc | |
| from PIL import Image, ImageDraw, ImageFont | |
| from PIL import Image | |
| from gradio_client import Client, handle_file | |
| import uuid | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from diffusers import AutoencoderKL, TCDScheduler | |
| from diffusers.models.model_loading_utils import load_state_dict | |
| from gradio_imageslider import ImageSlider | |
| from huggingface_hub import hf_hub_download | |
| from transformers import pipeline | |
| from controlnet_union import ControlNetModel_Union | |
| from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline | |
| def debug_event(event_name, *args): | |
| """์ด๋ฒคํธ ๋๋ฒ๊น ์ ํธ๋ฆฌํฐ""" | |
| print(f"Event '{event_name}' triggered at {time.strftime('%H:%M:%S')}") | |
| print(f"Arguments: {args}") | |
| return args | |
| def clear_memory(): | |
| """๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์""" | |
| gc.collect() | |
| try: | |
| if torch.cuda.is_available(): | |
| with torch.cuda.device(0): # ๋ช ์์ ์ผ๋ก device 0 ์ฌ์ฉ | |
| torch.cuda.empty_cache() | |
| except: | |
| pass | |
| # GPU ์ค์ | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # ๋ช ์์ ์ผ๋ก cuda:0 ์ง์ | |
| # GPU ์ค์ ์ try-except๋ก ๊ฐ์ธ๊ธฐ | |
| if torch.cuda.is_available(): | |
| try: | |
| with torch.cuda.device(0): | |
| torch.cuda.empty_cache() | |
| torch.backends.cudnn.benchmark = True | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| except: | |
| print("Warning: Could not configure CUDA settings") | |
| # ๋ฒ์ญ ๋ชจ๋ธ ์ด๊ธฐํ | |
| model_name = "Helsinki-NLP/opus-mt-ko-en" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to('cpu') | |
| translator = pipeline("translation", model=model, tokenizer=tokenizer, device=-1) | |
| def translate_to_english(text: str) -> str: | |
| """ํ๊ธ ํ ์คํธ๋ฅผ ์์ด๋ก ๋ฒ์ญ""" | |
| try: | |
| if any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in text): | |
| translated = translator(text, max_length=128)[0]['translation_text'] | |
| print(f"Translated '{text}' to '{translated}'") | |
| return translated | |
| return text | |
| except Exception as e: | |
| print(f"Translation error: {str(e)}") | |
| return text | |
| BoundingBox = tuple[int, int, int, int] | |
| pillow_heif.register_heif_opener() | |
| pillow_heif.register_avif_opener() | |
| # HF ํ ํฐ ์ค์ | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| if HF_TOKEN is None: | |
| raise ValueError("Please set the HF_TOKEN environment variable") | |
| try: | |
| login(token=HF_TOKEN) | |
| except Exception as e: | |
| raise ValueError(f"Failed to login to Hugging Face: {str(e)}") | |
| # ๋ชจ๋ธ ์ด๊ธฐํ | |
| segmenter = BoxSegmenter(device="cpu") | |
| segmenter.device = device | |
| segmenter.model = segmenter.model.to(device=segmenter.device) | |
| gd_model_path = "IDEA-Research/grounding-dino-base" | |
| gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path) | |
| gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32) | |
| gd_model = gd_model.to(device=device) | |
| assert isinstance(gd_model, GroundingDinoForObjectDetection) | |
| # FLUX ํ์ดํ๋ผ์ธ ์ด๊ธฐํ | |
| pipe = FluxPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-dev", | |
| torch_dtype=torch.float16, | |
| use_auth_token=HF_TOKEN | |
| ) | |
| pipe.enable_attention_slicing(slice_size="auto") | |
| # LoRA ๊ฐ์ค์น ๋ก๋ | |
| pipe.load_lora_weights( | |
| hf_hub_download( | |
| "ByteDance/Hyper-SD", | |
| "Hyper-FLUX.1-dev-8steps-lora.safetensors", | |
| use_auth_token=HF_TOKEN | |
| ) | |
| ) | |
| pipe.fuse_lora(lora_scale=0.125) | |
| # GPU ์ค์ ์ try-except๋ก ๊ฐ์ธ๊ธฐ | |
| try: | |
| if torch.cuda.is_available(): | |
| pipe = pipe.to("cuda:0") # ๋ช ์์ ์ผ๋ก cuda:0 ์ง์ | |
| except Exception as e: | |
| print(f"Warning: Could not move pipeline to CUDA: {str(e)}") | |
| #------------------------------- ์ด๋ฏธ์ง ์ธํ์ธํ ---------------------- | |
| client = Client("NabeelShar/BiRefNet_for_text_writing") | |
| MODELS = { | |
| "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning", | |
| } | |
| config_file = hf_hub_download( | |
| "xinsir/controlnet-union-sdxl-1.0", | |
| filename="config_promax.json", | |
| ) | |
| config = ControlNetModel_Union.load_config(config_file) | |
| controlnet_model = ControlNetModel_Union.from_config(config) | |
| model_file = hf_hub_download( | |
| "xinsir/controlnet-union-sdxl-1.0", | |
| filename="diffusion_pytorch_model_promax.safetensors", | |
| ) | |
| state_dict = load_state_dict(model_file) | |
| model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( | |
| controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" | |
| ) | |
| model.to(device="cuda", dtype=torch.float16) | |
| vae = AutoencoderKL.from_pretrained( | |
| "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 | |
| ).to("cuda") | |
| pipe = StableDiffusionXLFillPipeline.from_pretrained( | |
| "SG161222/RealVisXL_V5.0_Lightning", | |
| torch_dtype=torch.float16, | |
| vae=vae, | |
| controlnet=model, | |
| variant="fp16", | |
| ).to("cuda") | |
| pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) | |
| def translate_if_korean(text): | |
| # ์ ๋ ฅ๋ ํ ์คํธ๊ฐ ํ๊ธ์ ํฌํจํ๊ณ ์๋์ง ํ์ธ | |
| if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in text): | |
| # ํ๊ธ์ด ํฌํจ๋์ด ์๋ค๋ฉด ๋ฒ์ญ | |
| translated = translator(text)[0]['translation_text'] | |
| print(f"Translated prompt: {translated}") # ๋๋ฒ๊น ์ ์ํ ์ถ๋ ฅ | |
| return translated | |
| return text | |
| def fill_image(prompt, image, model_selection): | |
| # ํ๋กฌํํธ ๋ฒ์ญ | |
| translated_prompt = translate_if_korean(prompt) | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = pipe.encode_prompt(translated_prompt, "cuda", True) | |
| source = image["background"] | |
| mask = image["layers"][0] | |
| alpha_channel = mask.split()[3] | |
| binary_mask = alpha_channel.point(lambda p: p > 0 and 255) | |
| cnet_image = source.copy() | |
| cnet_image.paste(0, (0, 0), binary_mask) | |
| for image in pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| image=cnet_image, | |
| ): | |
| yield image, cnet_image | |
| image = image.convert("RGBA") | |
| cnet_image.paste(image, (0, 0), binary_mask) | |
| yield source, cnet_image | |
| def clear_result(): | |
| return gr.update(value=None) | |
| def process_inpainting(image, mask_input, prompt): | |
| """์ด๋ฏธ์ง ์ธํ์ธํ ์ฒ๋ฆฌ ํจ์""" | |
| try: | |
| if image is None or mask_input is None or not prompt: | |
| raise gr.Error("Please provide image, mask, and prompt") | |
| # ํ๋กฌํํธ ๋ฒ์ญ (ํ๊ธ์ธ ๊ฒฝ์ฐ) | |
| translated_prompt = translate_if_korean(prompt) | |
| # ๋ง์คํฌ ์ฒ๋ฆฌ | |
| source = image | |
| if isinstance(mask_input, dict): | |
| mask = mask_input["layers"][0] | |
| alpha_channel = mask.split()[3] | |
| binary_mask = alpha_channel.point(lambda p: p > 0 and 255) | |
| else: | |
| raise gr.Error("Invalid mask input") | |
| # ์ธํ์ธํ ์ ์ํ ์ด๋ฏธ์ง ์ค๋น | |
| cnet_image = source.copy() | |
| cnet_image.paste(0, (0, 0), binary_mask) | |
| # ํ๋กฌํํธ ์๋ฒ ๋ฉ | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = pipe.encode_prompt(translated_prompt, "cuda", True) | |
| # ์ธํ์ธํ ์คํ | |
| result = None | |
| for image in pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| image=cnet_image, | |
| ): | |
| result = image | |
| if result is None: | |
| raise gr.Error("Inpainting failed") | |
| # ๊ฒฐ๊ณผ ์ด๋ฏธ์ง ์ฒ๋ฆฌ | |
| result = result.convert("RGBA") | |
| cnet_image.paste(result, (0, 0), binary_mask) | |
| return cnet_image | |
| except Exception as e: | |
| print(f"Inpainting error: {str(e)}") | |
| raise gr.Error(f"Inpainting failed: {str(e)}") | |
| finally: | |
| clear_memory() | |
| #--------------- ์ด๋ฏธ์ง ์ธํ์ธํ ๋ ---------------- | |
| class timer: | |
| def __init__(self, method_name="timed process"): | |
| self.method = method_name | |
| def __enter__(self): | |
| self.start = time.time() | |
| print(f"{self.method} starts") | |
| def __exit__(self, exc_type, exc_val, exc_tb): | |
| end = time.time() | |
| print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
| def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None: | |
| if not bboxes: | |
| return None | |
| for bbox in bboxes: | |
| assert len(bbox) == 4 | |
| assert all(isinstance(x, int) for x in bbox) | |
| return ( | |
| min(bbox[0] for bbox in bboxes), | |
| min(bbox[1] for bbox in bboxes), | |
| max(bbox[2] for bbox in bboxes), | |
| max(bbox[3] for bbox in bboxes), | |
| ) | |
| def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor: | |
| x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1) | |
| return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1) | |
| def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None: | |
| inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device) | |
| with no_grad(): | |
| outputs = gd_model(**inputs) | |
| width, height = img.size | |
| results: dict[str, Any] = gd_processor.post_process_grounded_object_detection( | |
| outputs, | |
| inputs["input_ids"], | |
| target_sizes=[(height, width)], | |
| )[0] | |
| assert "boxes" in results and isinstance(results["boxes"], torch.Tensor) | |
| bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height) | |
| return bbox_union(bboxes.numpy().tolist()) | |
| def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image: | |
| assert img.size == mask_img.size | |
| img = img.convert("RGB") | |
| mask_img = mask_img.convert("L") | |
| if defringe: | |
| rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0 | |
| foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha)) | |
| img = Image.fromarray((foreground * 255).astype("uint8")) | |
| result = Image.new("RGBA", img.size) | |
| result.paste(img, (0, 0), mask_img) | |
| return result | |
| def adjust_size_to_multiple_of_8(width: int, height: int) -> tuple[int, int]: | |
| """์ด๋ฏธ์ง ํฌ๊ธฐ๋ฅผ 8์ ๋ฐฐ์๋ก ์กฐ์ ํ๋ ํจ์""" | |
| new_width = ((width + 7) // 8) * 8 | |
| new_height = ((height + 7) // 8) * 8 | |
| return new_width, new_height | |
| def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int, int]: | |
| """์ ํ๋ ๋น์จ์ ๋ฐ๋ผ ์ด๋ฏธ์ง ํฌ๊ธฐ ๊ณ์ฐ""" | |
| if aspect_ratio == "1:1": | |
| return base_size, base_size | |
| elif aspect_ratio == "16:9": | |
| return base_size * 16 // 9, base_size | |
| elif aspect_ratio == "9:16": | |
| return base_size, base_size * 16 // 9 | |
| elif aspect_ratio == "4:3": | |
| return base_size * 4 // 3, base_size | |
| return base_size, base_size | |
| # 40์ด์์ 20์ด๋ก ๊ฐ์ | |
| def generate_background(prompt: str, aspect_ratio: str) -> Image.Image: | |
| try: | |
| width, height = calculate_dimensions(aspect_ratio) | |
| width, height = adjust_size_to_multiple_of_8(width, height) | |
| max_size = 768 | |
| if width > max_size or height > max_size: | |
| ratio = max_size / max(width, height) | |
| width = int(width * ratio) | |
| height = int(height * ratio) | |
| width, height = adjust_size_to_multiple_of_8(width, height) | |
| with timer("Background generation"): | |
| try: | |
| with torch.inference_mode(): | |
| image = pipe( | |
| prompt=prompt, | |
| width=width, | |
| height=height, | |
| num_inference_steps=8, | |
| guidance_scale=4.0 | |
| ).images[0] | |
| except Exception as e: | |
| print(f"Pipeline error: {str(e)}") | |
| return Image.new('RGB', (width, height), 'white') | |
| return image | |
| except Exception as e: | |
| print(f"Background generation error: {str(e)}") | |
| return Image.new('RGB', (512, 512), 'white') | |
| def create_position_grid(): | |
| return """ | |
| <div class="position-grid" style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; width: 150px; margin: auto;"> | |
| <button class="position-btn" data-pos="top-left">โ</button> | |
| <button class="position-btn" data-pos="top-center">โ</button> | |
| <button class="position-btn" data-pos="top-right">โ</button> | |
| <button class="position-btn" data-pos="middle-left">โ</button> | |
| <button class="position-btn" data-pos="middle-center">โข</button> | |
| <button class="position-btn" data-pos="middle-right">โ</button> | |
| <button class="position-btn" data-pos="bottom-left">โ</button> | |
| <button class="position-btn" data-pos="bottom-center" data-default="true">โ</button> | |
| <button class="position-btn" data-pos="bottom-right">โ</button> | |
| </div> | |
| """ | |
| def calculate_object_position(position: str, bg_size: tuple[int, int], obj_size: tuple[int, int]) -> tuple[int, int]: | |
| """์ค๋ธ์ ํธ์ ์์น ๊ณ์ฐ""" | |
| bg_width, bg_height = bg_size | |
| obj_width, obj_height = obj_size | |
| positions = { | |
| "top-left": (0, 0), | |
| "top-center": ((bg_width - obj_width) // 2, 0), | |
| "top-right": (bg_width - obj_width, 0), | |
| "middle-left": (0, (bg_height - obj_height) // 2), | |
| "middle-center": ((bg_width - obj_width) // 2, (bg_height - obj_height) // 2), | |
| "middle-right": (bg_width - obj_width, (bg_height - obj_height) // 2), | |
| "bottom-left": (0, bg_height - obj_height), | |
| "bottom-center": ((bg_width - obj_width) // 2, bg_height - obj_height), | |
| "bottom-right": (bg_width - obj_width, bg_height - obj_height) | |
| } | |
| return positions.get(position, positions["bottom-center"]) | |
| def resize_object(image: Image.Image, scale_percent: float) -> Image.Image: | |
| """์ค๋ธ์ ํธ ํฌ๊ธฐ ์กฐ์ """ | |
| width = int(image.width * scale_percent / 100) | |
| height = int(image.height * scale_percent / 100) | |
| return image.resize((width, height), Image.Resampling.LANCZOS) | |
| def combine_with_background(foreground: Image.Image, background: Image.Image, | |
| position: str = "bottom-center", scale_percent: float = 100) -> Image.Image: | |
| """์ ๊ฒฝ๊ณผ ๋ฐฐ๊ฒฝ ํฉ์ฑ ํจ์""" | |
| print(f"Combining with position: {position}, scale: {scale_percent}") | |
| result = background.convert('RGBA') | |
| scaled_foreground = resize_object(foreground, scale_percent) | |
| x, y = calculate_object_position(position, result.size, scaled_foreground.size) | |
| print(f"Calculated position coordinates: ({x}, {y})") | |
| result.paste(scaled_foreground, (x, y), scaled_foreground) | |
| return result | |
| # 120์ด์์ 30์ด๋ก ๊ฐ์ | |
| def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]: | |
| time_log: list[str] = [] | |
| try: | |
| if isinstance(prompt, str): | |
| t0 = time.time() | |
| bbox = gd_detect(img, prompt) | |
| time_log.append(f"detect: {time.time() - t0}") | |
| if not bbox: | |
| print(time_log[0]) | |
| raise gr.Error("No object detected") | |
| else: | |
| bbox = prompt | |
| t0 = time.time() | |
| mask = segmenter(img, bbox) | |
| time_log.append(f"segment: {time.time() - t0}") | |
| return mask, bbox, time_log | |
| except Exception as e: | |
| print(f"GPU process error: {str(e)}") | |
| raise | |
| def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]: | |
| try: | |
| # ์ ๋ ฅ ์ด๋ฏธ์ง ํฌ๊ธฐ ์ ํ | |
| max_size = 1024 | |
| if img.width > max_size or img.height > max_size: | |
| ratio = max_size / max(img.width, img.height) | |
| new_size = (int(img.width * ratio), int(img.height * ratio)) | |
| img = img.resize(new_size, Image.LANCZOS) | |
| # CUDA ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ์์ | |
| try: | |
| if torch.cuda.is_available(): | |
| current_device = torch.cuda.current_device() | |
| with torch.cuda.device(current_device): | |
| torch.cuda.empty_cache() | |
| except Exception as e: | |
| print(f"CUDA memory management failed: {e}") | |
| with torch.cuda.amp.autocast(enabled=torch.cuda.is_available()): | |
| mask, bbox, time_log = _gpu_process(img, prompt) | |
| masked_alpha = apply_mask(img, mask, defringe=True) | |
| if bg_prompt: | |
| background = generate_background(bg_prompt, aspect_ratio) | |
| combined = background | |
| else: | |
| combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha) | |
| clear_memory() | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp: | |
| combined.save(temp.name) | |
| return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True) | |
| except Exception as e: | |
| clear_memory() | |
| print(f"Processing error: {str(e)}") | |
| raise gr.Error(f"Processing failed: {str(e)}") | |
| def on_change_bbox(prompts: dict[str, Any] | None): | |
| return gr.update(interactive=prompts is not None) | |
| def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None): | |
| return gr.update(interactive=bool(img and prompt)) | |
| def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None, | |
| aspect_ratio: str = "1:1", position: str = "bottom-center", | |
| scale_percent: float = 100) -> tuple[Image.Image, Image.Image]: | |
| try: | |
| if img is None or prompt.strip() == "": | |
| raise gr.Error("Please provide both image and prompt") | |
| print(f"Processing with position: {position}, scale: {scale_percent}") # ๋๋ฒ๊น ์ฉ | |
| try: | |
| prompt = translate_to_english(prompt) | |
| if bg_prompt: | |
| bg_prompt = translate_to_english(bg_prompt) | |
| except Exception as e: | |
| print(f"Translation error (continuing with original text): {str(e)}") | |
| results, _ = _process(img, prompt, bg_prompt, aspect_ratio) | |
| if bg_prompt: | |
| try: | |
| print(f"Using position: {position}") # ๋๋ฒ๊น ์ฉ | |
| # ์์น ๊ฐ ๊ฒ์ฆ | |
| valid_positions = ["top-left", "top-center", "top-right", | |
| "middle-left", "middle-center", "middle-right", | |
| "bottom-left", "bottom-center", "bottom-right"] | |
| if position not in valid_positions: | |
| position = "bottom-center" | |
| print(f"Invalid position, using default: {position}") | |
| combined = combine_with_background( | |
| foreground=results[2], | |
| background=results[1], | |
| position=position, | |
| scale_percent=scale_percent | |
| ) | |
| return combined, results[2] | |
| except Exception as e: | |
| print(f"Combination error: {str(e)}") | |
| return results[1], results[2] | |
| return results[1], results[2] # ๊ธฐ๋ณธ ๋ฐํ ์ถ๊ฐ | |
| except Exception as e: | |
| print(f"Error in process_prompt: {str(e)}") | |
| raise gr.Error(str(e)) | |
| finally: | |
| clear_memory() | |
| def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]: | |
| try: | |
| if img is None or box_input.strip() == "": | |
| raise gr.Error("Please provide both image and bounding box coordinates") | |
| try: | |
| coords = eval(box_input) | |
| if not isinstance(coords, list) or len(coords) != 4: | |
| raise ValueError("Invalid box format") | |
| bbox = tuple(int(x) for x in coords) | |
| except: | |
| raise gr.Error("Invalid box format. Please provide [xmin, ymin, xmax, ymax]") | |
| # Process the image | |
| results, _ = _process(img, bbox) | |
| # ํฉ์ฑ๋ ์ด๋ฏธ์ง์ ์ถ์ถ๋ ์ด๋ฏธ์ง๋ง ๋ฐํ | |
| return results[1], results[2] | |
| except Exception as e: | |
| raise gr.Error(str(e)) | |
| # Event handler functions ์์ | |
| def update_process_button(img, prompt): | |
| return gr.update( | |
| interactive=bool(img and prompt), | |
| variant="primary" if bool(img and prompt) else "secondary" | |
| ) | |
| def update_box_button(img, box_input): | |
| try: | |
| if img and box_input: | |
| coords = eval(box_input) | |
| if isinstance(coords, list) and len(coords) == 4: | |
| return gr.update(interactive=True, variant="primary") | |
| return gr.update(interactive=False, variant="secondary") | |
| except: | |
| return gr.update(interactive=False, variant="secondary") | |
| css = """ | |
| /* ๊ธฐ๋ณธ ๋ ์ด์์ */ | |
| footer {display: none !important} | |
| body {background: #f5f7fa !important} | |
| /* ๋ฉ์ธ ํ์ดํ */ | |
| .main-title { | |
| text-align: center; | |
| margin: 1.5em auto; | |
| padding: 2em; | |
| background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); | |
| border-radius: 15px; | |
| box-shadow: 0 8px 16px rgba(0,0,0,0.1); | |
| max-width: 1200px; | |
| } | |
| .main-title h1 { | |
| color: #2196F3; | |
| font-size: 3em; | |
| margin-bottom: 0.5em; | |
| font-weight: 700; | |
| text-shadow: 2px 2px 4px rgba(0,0,0,0.1); | |
| } | |
| .main-title p { | |
| color: #555; | |
| font-size: 1.4em; | |
| line-height: 1.6; | |
| max-width: 800px; | |
| margin: 0 auto; | |
| } | |
| /* ํจ๋ ์คํ์ผ๋ง */ | |
| .input-panel, .output-panel { | |
| background: white; | |
| padding: 2em; | |
| border-radius: 15px; | |
| box-shadow: 0 4px 12px rgba(0,0,0,0.05); | |
| margin-bottom: 1.5em; | |
| transition: all 0.3s ease; | |
| } | |
| .input-panel:hover, .output-panel:hover { | |
| box-shadow: 0 6px 16px rgba(0,0,0,0.1); | |
| } | |
| /* ์ปจํธ๋กค ํจ๋ */ | |
| .controls-panel { | |
| background: #f8f9fa; | |
| padding: 1.5em; | |
| border-radius: 12px; | |
| margin: 1.5em 0; | |
| border: 1px solid #e9ecef; | |
| } | |
| /* ์ด๋ฏธ์ง ๋์คํ๋ ์ด */ | |
| .image-display { | |
| min-height: 512px; | |
| display: flex; | |
| align-items: center; | |
| justify-content: center; | |
| background: #fafafa; | |
| border-radius: 12px; | |
| margin: 1.5em 0; | |
| border: 2px dashed #e0e0e0; | |
| } | |
| /* ๋ฒํผ ์คํ์ผ๋ง */ | |
| .position-btn { | |
| padding: 12px; | |
| border: 2px solid #ddd; | |
| border-radius: 8px; | |
| background: white; | |
| cursor: pointer; | |
| transition: all 0.2s ease; | |
| width: 48px; | |
| height: 48px; | |
| display: flex; | |
| align-items: center; | |
| justify-content: center; | |
| font-size: 1.2em; | |
| margin: 4px; | |
| } | |
| .position-btn:hover { | |
| background: #e3f2fd; | |
| transform: translateY(-2px); | |
| box-shadow: 0 4px 8px rgba(0,0,0,0.1); | |
| } | |
| .position-btn.selected { | |
| background-color: #2196F3; | |
| color: white; | |
| border-color: #1976D2; | |
| box-shadow: 0 4px 12px rgba(33,150,243,0.3); | |
| } | |
| /* ๊ทธ๋ฆฌ๋ ๋ ์ด์์ */ | |
| .position-grid { | |
| display: grid; | |
| grid-template-columns: repeat(3, 1fr); | |
| gap: 10px; | |
| margin: 1.5em 0; | |
| padding: 10px; | |
| background: #f5f5f5; | |
| border-radius: 12px; | |
| } | |
| /* ์ ๋ ฅ ํ๋ ์คํ์ผ๋ง */ | |
| input[type="text"], textarea { | |
| border: 2px solid #e0e0e0; | |
| border-radius: 8px; | |
| padding: 12px; | |
| font-size: 1.1em; | |
| transition: all 0.3s ease; | |
| } | |
| input[type="text"]:focus, textarea:focus { | |
| border-color: #2196F3; | |
| box-shadow: 0 0 0 3px rgba(33,150,243,0.2); | |
| } | |
| /* ์ฌ๋ผ์ด๋ ์คํ์ผ๋ง */ | |
| .slider-container { | |
| margin: 1.5em 0; | |
| } | |
| .slider { | |
| height: 6px; | |
| background: #e0e0e0; | |
| border-radius: 3px; | |
| } | |
| .slider-handle { | |
| width: 20px; | |
| height: 20px; | |
| background: #2196F3; | |
| border: 2px solid white; | |
| box-shadow: 0 2px 4px rgba(0,0,0,0.2); | |
| } | |
| /* ์ํ ๋ฉ์์ง */ | |
| .status-message { | |
| padding: 10px; | |
| border-radius: 8px; | |
| margin: 10px 0; | |
| font-size: 0.9em; | |
| transition: all 0.3s ease; | |
| } | |
| .status-success { | |
| background: #e8f5e9; | |
| color: #2e7d32; | |
| border: 1px solid #a5d6a7; | |
| } | |
| .status-error { | |
| background: #ffebee; | |
| color: #c62828; | |
| border: 1px solid #ef9a9a; | |
| } | |
| /* ๋ฐ์ํ ๋์์ธ */ | |
| @media (max-width: 768px) { | |
| .main-title h1 { | |
| font-size: 2em; | |
| } | |
| .main-title p { | |
| font-size: 1.1em; | |
| } | |
| .input-panel, .output-panel { | |
| padding: 1em; | |
| } | |
| .position-btn { | |
| width: 40px; | |
| height: 40px; | |
| font-size: 1em; | |
| } | |
| } | |
| /* ์ ๋๋ฉ์ด์ ํจ๊ณผ */ | |
| @keyframes fadeIn { | |
| from {opacity: 0; transform: translateY(10px);} | |
| to {opacity: 1; transform: translateY(0);} | |
| } | |
| .fade-in { | |
| animation: fadeIn 0.3s ease-out; | |
| } | |
| """ | |
| def add_text_with_stroke(draw, text, x, y, font, text_color, stroke_width): | |
| """Helper function to draw text with stroke""" | |
| # Draw the stroke/outline | |
| for adj_x in range(-stroke_width, stroke_width + 1): | |
| for adj_y in range(-stroke_width, stroke_width + 1): | |
| draw.text((x + adj_x, y + adj_y), text, font=font, fill=text_color) | |
| def remove_background(image): | |
| # Save the image to a specific location | |
| filename = f"image_{uuid.uuid4()}.png" # Generates a universally unique identifier (UUID) for the filename | |
| image.save(filename) | |
| # Call gradio client for background removal | |
| result = client.predict(images=handle_file(filename), api_name="/image") | |
| return Image.open(result[0]) | |
| def superimpose(image_with_text, overlay_image): | |
| # Open image as RGBA to handle transparency | |
| overlay_image = overlay_image.convert("RGBA") | |
| # Paste overlay on the background | |
| image_with_text.paste(overlay_image, (0, 0), overlay_image) | |
| # Save the final image | |
| # image_with_text.save("output_image.png") | |
| return image_with_text | |
| def add_text_to_image( | |
| input_image, | |
| text, | |
| font_size, | |
| color, | |
| opacity, | |
| x_position, | |
| y_position, | |
| thickness, | |
| text_position_type, | |
| font_choice | |
| ): | |
| try: | |
| if input_image is None or text.strip() == "": | |
| return input_image | |
| # PIL Image ๊ฐ์ฒด๋ก ๋ณํ | |
| if not isinstance(input_image, Image.Image): | |
| if isinstance(input_image, np.ndarray): | |
| image = Image.fromarray(input_image) | |
| else: | |
| raise ValueError("Unsupported image type") | |
| else: | |
| image = input_image.copy() | |
| # ์ด๋ฏธ์ง๋ฅผ RGBA ๋ชจ๋๋ก ๋ณํ | |
| if image.mode != 'RGBA': | |
| image = image.convert('RGBA') | |
| # ํฐํธ ์ค์ | |
| font_files = { | |
| "Default": "DejaVuSans.ttf", | |
| "Korean Regular": "ko-Regular.ttf" | |
| } | |
| try: | |
| font_file = font_files.get(font_choice, "DejaVuSans.ttf") | |
| font = ImageFont.truetype(font_file, int(font_size)) | |
| except Exception as e: | |
| print(f"Font loading error ({font_choice}): {str(e)}") | |
| font = ImageFont.load_default() | |
| # ์์ ์ค์ | |
| color_map = { | |
| 'White': (255, 255, 255), | |
| 'Black': (0, 0, 0), | |
| 'Red': (255, 0, 0), | |
| 'Green': (0, 255, 0), | |
| 'Blue': (0, 0, 255), | |
| 'Yellow': (255, 255, 0), | |
| 'Purple': (128, 0, 128) | |
| } | |
| rgb_color = color_map.get(color, (255, 255, 255)) | |
| # ์์ Draw ๊ฐ์ฒด ์์ฑํ์ฌ ํ ์คํธ ํฌ๊ธฐ ๊ณ์ฐ | |
| temp_draw = ImageDraw.Draw(image) | |
| text_bbox = temp_draw.textbbox((0, 0), text, font=font) | |
| text_width = text_bbox[2] - text_bbox[0] | |
| text_height = text_bbox[3] - text_bbox[1] | |
| # ์์น ๊ณ์ฐ | |
| actual_x = int((image.width - text_width) * (x_position / 100)) | |
| actual_y = int((image.height - text_height) * (y_position / 100)) | |
| # ํ ์คํธ ์์ ์ค์ | |
| text_color = (*rgb_color, int(opacity)) | |
| if text_position_type == "Text Behind Image": | |
| try: | |
| # ์๋ณธ ์ด๋ฏธ์ง์์ ์ ๊ฒฝ ๊ฐ์ฒด๋ง ์ถ์ถ | |
| foreground = remove_background(image) | |
| # ๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง ์์ฑ (์๋ณธ ์ด๋ฏธ์ง ๋ณต์ฌ) | |
| background = image.copy() | |
| # ํ ์คํธ๋ฅผ ๊ทธ๋ฆด ์์ ๋ ์ด์ด ์์ฑ | |
| text_layer = Image.new('RGBA', image.size, (255, 255, 255, 0)) | |
| draw_text = ImageDraw.Draw(text_layer) | |
| # ํ ์คํธ ๊ทธ๋ฆฌ๊ธฐ | |
| add_text_with_stroke( | |
| draw_text, | |
| text, | |
| actual_x, | |
| actual_y, | |
| font, | |
| text_color, | |
| int(thickness) | |
| ) | |
| # ๋ฐฐ๊ฒฝ์ ํ ์คํธ ํฉ์ฑ | |
| background = Image.alpha_composite(background, text_layer) | |
| # ํ ์คํธ๊ฐ ์๋ ๋ฐฐ๊ฒฝ ์์ ์ ๊ฒฝ ๊ฐ์ฒด ํฉ์ฑ | |
| output_image = Image.alpha_composite(background, foreground) | |
| except Exception as e: | |
| print(f"Error in Text Behind Image processing: {str(e)}") | |
| return input_image | |
| else: | |
| # ํ ์คํธ ์ค๋ฒ๋ ์ด ์์ฑ | |
| txt_overlay = Image.new('RGBA', image.size, (255, 255, 255, 0)) | |
| draw = ImageDraw.Draw(txt_overlay) | |
| # ํ ์คํธ๋ฅผ ์ด๋ฏธ์ง ์์ ๊ทธ๋ฆฌ๊ธฐ | |
| add_text_with_stroke( | |
| draw, | |
| text, | |
| actual_x, | |
| actual_y, | |
| font, | |
| text_color, | |
| int(thickness) | |
| ) | |
| output_image = Image.alpha_composite(image, txt_overlay) | |
| # RGB๋ก ๋ณํ | |
| output_image = output_image.convert('RGB') | |
| return output_image | |
| except Exception as e: | |
| print(f"Error in add_text_to_image: {str(e)}") | |
| return input_image | |
| def update_position(new_position): | |
| """์์น ์ ๋ฐ์ดํธ ํจ์""" | |
| print(f"Position updated to: {new_position}") | |
| return new_position | |
| def update_position_and_ui(pos): | |
| """์์น ์ ๋ฐ์ดํธ ๋ฐ UI ๋ฐ์""" | |
| updates = {btn: gr.update(value="selected" if pos_val == pos else "") | |
| for btn, pos_val in position_mapping.items()} | |
| updates['position'] = pos | |
| return [pos] + [updates[btn] for btn in position_mapping.keys()] | |
| def process_inpainting_with_feedback(image, mask, prompt): | |
| """์ธํ์ธํ ์ฒ๋ฆฌ ๋ฐ ํผ๋๋ฐฑ""" | |
| try: | |
| result = process_inpainting(image, mask, prompt) | |
| return result, update_ui_state("inpainting", "Inpainting completed successfully!") | |
| except Exception as e: | |
| return None, update_ui_state("inpainting", f"Error: {str(e)}", is_error=True) | |
| def update_controls(bg_prompt): | |
| """๋ฐฐ๊ฒฝ ํ๋กฌํํธ ์ ๋ ฅ ์ฌ๋ถ์ ๋ฐ๋ผ ์ปจํธ๋กค ํ์ ์ ๋ฐ์ดํธ""" | |
| is_visible = bool(bg_prompt) | |
| return [ | |
| gr.update(visible=is_visible), # aspect_ratio | |
| gr.update(visible=is_visible), # object_controls | |
| ] | |
| with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: | |
| position = gr.State(value="bottom-center") | |
| processing_status = gr.State(value="idle") | |
| gr.HTML(""" | |
| <div class="main-title"> | |
| <h1>๐จ GiniGen Canvas-o3</h1> | |
| <p>Remove background of specified objects, generate new backgrounds, and insert text over or behind images with prompts.</p> | |
| </div> | |
| """) | |
| status_message = gr.HTML( | |
| value='<div class="status-message"></div>', | |
| visible=False | |
| ) | |
| with gr.Row(equal_height=True): | |
| # ์ผ์ชฝ ํจ๋ (์ ๋ ฅ) | |
| with gr.Column(scale=1): | |
| with gr.Group(elem_classes="input-panel"): | |
| with gr.Tabs(): | |
| # ์ฒซ ๋ฒ์งธ ํญ: ์ด๋ฏธ์ง ์ ๋ก๋ ๋ฐ ์ธํ์ธํ | |
| with gr.Tab("Image Upload & Inpainting"): | |
| input_image = gr.Image( | |
| type="pil", | |
| label="Upload Image", | |
| interactive=True, | |
| height=400, | |
| elem_classes="fade-in" | |
| ) | |
| with gr.Group(): | |
| inpaint_prompt = gr.Textbox( | |
| label="Inpainting Prompt", | |
| placeholder="Describe what you want to add in the masked area..." | |
| ) | |
| mask_input = image_annotator( | |
| label="Draw mask for inpainting", | |
| height=400 | |
| ) | |
| inpaint_btn = gr.Button("Apply Inpainting", variant="primary") | |
| # ๋ ๋ฒ์งธ ํญ: ๋ฐฐ๊ฒฝ ์ ๊ฑฐ ๋ฐ ์์ฑ | |
| with gr.Tab("Background Removal"): | |
| text_prompt = gr.Textbox( | |
| label="Object to Extract", | |
| placeholder="Enter what you want to extract...", | |
| interactive=True, | |
| elem_classes="fade-in" | |
| ) | |
| with gr.Row(): | |
| bg_prompt = gr.Textbox( | |
| label="Background Prompt (optional)", | |
| placeholder="Describe the background...", | |
| interactive=True, | |
| scale=3 | |
| ) | |
| aspect_ratio = gr.Dropdown( | |
| choices=["1:1", "16:9", "9:16", "4:3"], | |
| value="1:1", | |
| label="Aspect Ratio", | |
| interactive=True, | |
| visible=True, | |
| scale=1 | |
| ) | |
| with gr.Group(elem_classes="controls-panel", visible=False) as object_controls: | |
| with gr.Column(scale=1): | |
| with gr.Row(): | |
| btn_top_left = gr.Button("โ", elem_classes="position-btn") | |
| btn_top_center = gr.Button("โ", elem_classes="position-btn") | |
| btn_top_right = gr.Button("โ", elem_classes="position-btn") | |
| with gr.Row(): | |
| btn_middle_left = gr.Button("โ", elem_classes="position-btn") | |
| btn_middle_center = gr.Button("โข", elem_classes="position-btn") | |
| btn_middle_right = gr.Button("โ", elem_classes="position-btn") | |
| with gr.Row(): | |
| btn_bottom_left = gr.Button("โ", elem_classes="position-btn") | |
| btn_bottom_center = gr.Button("โ", elem_classes="position-btn", value="selected") | |
| btn_bottom_right = gr.Button("โ", elem_classes="position-btn") | |
| with gr.Column(scale=1): | |
| scale_slider = gr.Slider( | |
| minimum=10, | |
| maximum=200, | |
| value=50, | |
| step=5, | |
| label="Object Size (%)" | |
| ) | |
| process_btn = gr.Button( | |
| "Process", | |
| variant="primary", | |
| interactive=False, | |
| size="lg" | |
| ) | |
| # ์ค๋ฅธ์ชฝ ํจ๋ (์ถ๋ ฅ) | |
| with gr.Column(scale=1): | |
| with gr.Group(elem_classes="output-panel"): | |
| with gr.Tab("Result"): | |
| combined_image = gr.Image( | |
| label="Combined Result", | |
| show_download_button=True, | |
| type="pil", | |
| height=400 | |
| ) | |
| with gr.Accordion("Text Insertion Options", open=False): | |
| with gr.Group(): | |
| with gr.Row(): | |
| text_input = gr.Textbox( | |
| label="Text Content", | |
| placeholder="Enter text to add..." | |
| ) | |
| text_position_type = gr.Radio( | |
| choices=["Text Over Image", "Text Behind Image"], | |
| value="Text Over Image", | |
| label="Text Position" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| font_choice = gr.Dropdown( | |
| choices=["Default", "Korean Regular"], | |
| value="Default", | |
| label="Font Selection", | |
| interactive=True | |
| ) | |
| font_size = gr.Slider( | |
| minimum=10, | |
| maximum=200, | |
| value=40, | |
| step=5, | |
| label="Font Size" | |
| ) | |
| color_dropdown = gr.Dropdown( | |
| choices=["White", "Black", "Red", "Green", "Blue", "Yellow", "Purple"], | |
| value="White", | |
| label="Text Color" | |
| ) | |
| thickness = gr.Slider( | |
| minimum=0, | |
| maximum=10, | |
| value=1, | |
| step=1, | |
| label="Text Thickness" | |
| ) | |
| with gr.Column(scale=1): | |
| opacity_slider = gr.Slider( | |
| minimum=0, | |
| maximum=255, | |
| value=255, | |
| step=1, | |
| label="Opacity" | |
| ) | |
| x_position = gr.Slider( | |
| minimum=0, | |
| maximum=100, | |
| value=50, | |
| step=1, | |
| label="Left(0%)~Right(100%)" | |
| ) | |
| y_position = gr.Slider( | |
| minimum=0, | |
| maximum=100, | |
| value=50, | |
| step=1, | |
| label="High(0%)~Low(100%)" | |
| ) | |
| add_text_btn = gr.Button("Apply Text", variant="primary") | |
| extracted_image = gr.Image( | |
| label="Extracted Object", | |
| show_download_button=True, | |
| type="pil", | |
| height=200 | |
| ) | |
| # CSS ์คํ์ผ | |
| gr.HTML(""" | |
| <style> | |
| .position-btn.selected { | |
| background-color: #2196F3 !important; | |
| color: white !important; | |
| } | |
| </style> | |
| """) | |
| # ์ด๋ฒคํธ ๋ฐ์ธ๋ฉ | |
| position_mapping = { | |
| btn_top_left: "top-left", | |
| btn_top_center: "top-center", | |
| btn_top_right: "top-right", | |
| btn_middle_left: "middle-left", | |
| btn_middle_center: "middle-center", | |
| btn_middle_right: "middle-right", | |
| btn_bottom_left: "bottom-left", | |
| btn_bottom_center: "bottom-center", | |
| btn_bottom_right: "bottom-right" | |
| } | |
| def update_ui_state(component_id, value, is_error=False): | |
| """UI ์ํ ์ ๋ฐ์ดํธ ์ ํธ๋ฆฌํฐ""" | |
| class_name = "status-error" if is_error else "status-success" | |
| return gr.update( | |
| value=f'<div class="status-message {class_name}">{value}</div>', | |
| visible=True | |
| ) | |
| # ์์น ๋ฒํผ ์ด๋ฒคํธ ๋ฐ์ธ๋ฉ | |
| for btn, pos in position_mapping.items(): | |
| btn.click( | |
| fn=lambda p=pos: update_position_and_ui(p), | |
| outputs=[position] + list(position_mapping.keys()) | |
| ) | |
| # ์ธํ์ธํ ๋ฒํผ ์ด๋ฒคํธ | |
| inpaint_btn.click( | |
| fn=process_inpainting_with_feedback, | |
| inputs=[input_image, mask_input, inpaint_prompt], | |
| outputs=[input_image, status_message] | |
| ) | |
| # ํ๋ก์ธ์ค ๋ฒํผ ์ด๋ฒคํธ | |
| process_btn.click( | |
| fn=process_prompt, | |
| inputs=[ | |
| input_image, | |
| text_prompt, | |
| bg_prompt, | |
| aspect_ratio, | |
| position, | |
| scale_slider | |
| ], | |
| outputs=[combined_image, extracted_image] | |
| ) | |
| for btn, pos in position_mapping.items(): | |
| btn.click( | |
| fn=lambda pos=pos: update_position(pos), | |
| outputs=position | |
| ) | |
| bg_prompt.change( | |
| fn=update_controls, | |
| inputs=bg_prompt, | |
| outputs=[aspect_ratio, object_controls], | |
| queue=False | |
| ) | |
| input_image.change( | |
| fn=update_process_button, | |
| inputs=[input_image, text_prompt], | |
| outputs=process_btn, | |
| queue=False | |
| ) | |
| text_prompt.change( | |
| fn=update_process_button, | |
| inputs=[input_image, text_prompt], | |
| outputs=process_btn, | |
| queue=False | |
| ) | |
| add_text_btn.click( | |
| fn=add_text_to_image, | |
| inputs=[ | |
| combined_image, | |
| text_input, | |
| font_size, | |
| color_dropdown, | |
| opacity_slider, | |
| x_position, | |
| y_position, | |
| thickness, | |
| text_position_type, | |
| font_choice | |
| ], | |
| outputs=combined_image, | |
| api_name="add_text" | |
| ) | |
| demo.queue(max_size=5) | |
| demo.launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| share=False, | |
| max_threads=2 | |
| ) |