Spaces:
Paused
Paused
File size: 26,951 Bytes
38dd8f0 729e7f1 e6920c4 3a47996 e6920c4 ec0ff5f deb56c6 3a47996 cad5d49 3a47996 cad5d49 3a47996 3bee602 c0f2e23 3bee602 ec0ff5f 3bee602 96169f0 3bee602 7ee5f70 3bee602 19f37ea d5cff80 7ee5f70 d5cff80 7ee5f70 38dd8f0 cad5d49 38dd8f0 3bee602 c0f2e23 38dd8f0 105afff cad5d49 105afff cad5d49 105afff cad5d49 105afff deb56c6 c0f2e23 38dd8f0 3cee212 3bee602 ec0ff5f 2a729b9 38dd8f0 852ded9 d30fa97 105afff d30fa97 9d4caea d30fa97 105afff d30fa97 105afff d30fa97 105afff d922f5e 9d4caea 105afff 9d4caea d30fa97 38dd8f0 9d4caea d30fa97 852ded9 d922f5e 105afff d922f5e 105afff d922f5e 9d4caea d922f5e 105afff 9d4caea 105afff d922f5e 105afff d922f5e 38dd8f0 96169f0 d922f5e 96169f0 105afff 9d4caea ecb47d1 36fc032 5902bc6 ecb47d1 38dd8f0 ecb47d1 38dd8f0 7daf15f 38dd8f0 9701537 7daf15f 7ae084c 9701537 7daf15f 38dd8f0 d30fa97 10c000d deb56c6 f7cc5a8 deb56c6 10c000d d30fa97 deb56c6 10c000d 38dd8f0 a3055a6 38dd8f0 27c735f 10c000d deb56c6 a3055a6 10c000d 38dd8f0 d5cff80 e6920c4 36fc032 d819968 7ae084c d819968 541adaa 7ae084c d5cff80 7ae084c d819968 7ae084c 541adaa 7ae084c d819968 7ae084c d819968 e6920c4 3bee602 e6920c4 1160b91 38dd8f0 4af64e1 2dfb3f5 4af64e1 2dfb3f5 4af64e1 2dfb3f5 4af64e1 2dfb3f5 4af64e1 d819968 ecb47d1 9bf26ec ecb47d1 9bf26ec d6f5e9d 7ae084c 3a47996 7ae084c 3a47996 7ae084c 3a47996 9a6cd26 3a47996 ecb47d1 da47978 015ec9d 3a109ed 015ec9d 3a47996 34af73e df5b718 d30fa97 36fc032 ecb47d1 d648867 ecb47d1 541adaa 4eb00b3 ecb47d1 228ea98 9a6cd26 d648867 228ea98 df5b718 d6f5e9d df5b718 d6f5e9d df5b718 da47978 e87b1f0 2447d97 d6f5e9d 2447d97 49cf663 2447d97 49cf663 2447d97 d6f5e9d 2447d97 49cf663 2447d97 e87b1f0 ecb47d1 dff9eba ecb47d1 dff9eba d30fa97 ecb47d1 d30fa97 ecb47d1 d30fa97 2447d97 da47978 ecb47d1 df5b718 49cf663 da47978 2dfb3f5 a06e214 7ae084c e6920c4 27c735f e0db541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 |
import tempfile
import time
from collections.abc import Sequence
from typing import Any, cast
import os
from huggingface_hub import login, hf_hub_download
import gradio as gr
import numpy as np
import pillow_heif
import spaces
import torch
from gradio_image_annotation import image_annotator
from gradio_imageslider import ImageSlider
from PIL import Image
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
from refiners.fluxion.utils import no_grad
from refiners.solutions import BoxSegmenter
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
from diffusers import FluxPipeline
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import gc
import base64
# GPU ์ค์
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # ๋ช
์์ ์ผ๋ก cuda:0 ์ง์
###--------------ZERO GPU ํ์/ ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ๊ณตํต --------------------###
def clear_memory():
"""๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์"""
gc.collect()
if torch.cuda.is_available():
try:
with torch.cuda.device('cuda:0'):
torch.cuda.empty_cache()
torch.cuda.synchronize()
except Exception as e:
print(f"Warning: Could not clear CUDA memory: {e}")
###---------------------------------------------------------------
# GPU ์ค์ ์ try-except๋ก ๊ฐ์ธ๊ธฐ
if torch.cuda.is_available():
try:
with torch.cuda.device(0):
torch.cuda.empty_cache()
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
except:
print("Warning: Could not configure CUDA settings")
# ๋ฒ์ญ ๋ชจ๋ธ ์ด๊ธฐํ
model_name = "Helsinki-NLP/opus-mt-ko-en"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to('cpu')
translator = pipeline("translation", model=model, tokenizer=tokenizer, device=-1)
def translate_to_english(text: str) -> str:
"""ํ๊ธ ํ
์คํธ๋ฅผ ์์ด๋ก ๋ฒ์ญ"""
try:
if any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in text):
translated = translator(text, max_length=128)[0]['translation_text']
print(f"Translated '{text}' to '{translated}'")
return translated
return text
except Exception as e:
print(f"Translation error: {str(e)}")
return text
BoundingBox = tuple[int, int, int, int]
pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()
# HF ํ ํฐ ์ค์
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("Please set the HF_TOKEN environment variable")
try:
login(token=HF_TOKEN)
except Exception as e:
raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
# ๋ชจ๋ธ ์ด๊ธฐํ
segmenter = BoxSegmenter(device="cpu")
segmenter.device = device
segmenter.model = segmenter.model.to(device=segmenter.device)
gd_model_path = "IDEA-Research/grounding-dino-base"
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
gd_model = gd_model.to(device=device)
assert isinstance(gd_model, GroundingDinoForObjectDetection)
# ํ์ดํ๋ผ์ธ ์ด๊ธฐํ ๋ฐ ์ต์ ํ ์ค์
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.float16,
use_auth_token=HF_TOKEN
)
# ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ ์ค์ - FluxPipeline์์ ์ง์ํ๋ ๋ฉ์๋๋ง ์ฌ์ฉ
pipe.enable_attention_slicing(slice_size="auto")
# xformers ์ต์ ํ (์ค์น๋์ด ์๋ ๊ฒฝ์ฐ์๋ง)
try:
import xformers
pipe.enable_xformers_memory_efficient_attention()
except ImportError:
print("xformers is not installed. Skipping memory efficient attention.")
# GPU ์ค์
if torch.cuda.is_available():
try:
pipe = pipe.to("cuda:0")
# CPU ์คํ๋ก๋ฉ์ด ์ง์๋๋ ๊ฒฝ์ฐ์๋ง ํ์ฑํ
if hasattr(pipe, 'enable_model_cpu_offload'):
pipe.enable_model_cpu_offload()
except Exception as e:
print(f"Warning: Could not move pipeline to CUDA: {str(e)}")
# LoRA ๊ฐ์ค์น ๋ก๋
pipe.load_lora_weights(
hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
use_auth_token=HF_TOKEN
)
)
pipe.fuse_lora(lora_scale=0.125)
# GPU ์ค์ ์ try-except๋ก ๊ฐ์ธ๊ธฐ
try:
if torch.cuda.is_available():
pipe = pipe.to("cuda:0") # ๋ช
์์ ์ผ๋ก cuda:0 ์ง์
except Exception as e:
print(f"Warning: Could not move pipeline to CUDA: {str(e)}")
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
if not bboxes:
return None
for bbox in bboxes:
assert len(bbox) == 4
assert all(isinstance(x, int) for x in bbox)
return (
min(bbox[0] for bbox in bboxes),
min(bbox[1] for bbox in bboxes),
max(bbox[2] for bbox in bboxes),
max(bbox[3] for bbox in bboxes),
)
def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor:
x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1)
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)
with no_grad():
outputs = gd_model(**inputs)
width, height = img.size
results: dict[str, Any] = gd_processor.post_process_grounded_object_detection(
outputs,
inputs["input_ids"],
target_sizes=[(height, width)],
)[0]
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
return bbox_union(bboxes.numpy().tolist())
def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image:
assert img.size == mask_img.size
img = img.convert("RGB")
mask_img = mask_img.convert("L")
if defringe:
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
img = Image.fromarray((foreground * 255).astype("uint8"))
result = Image.new("RGBA", img.size)
result.paste(img, (0, 0), mask_img)
return result
def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int, int]:
"""์ ํ๋ ๋น์จ์ ๋ฐ๋ผ ์ด๋ฏธ์ง ํฌ๊ธฐ ๊ณ์ฐ"""
# FLUX ํ์ดํ๋ผ์ธ์ด ์ง์ํ๋ ์์ ํ ํฌ๊ธฐ ์ฌ์ฉ
if aspect_ratio == "1:1":
width = height = 512
elif aspect_ratio == "16:9":
width, height = 576, 320 # 16:9์ ๊ฐ๊น์ด ์์ ํ ํฌ๊ธฐ
elif aspect_ratio == "9:16":
width, height = 320, 576 # 9:16์ ๊ฐ๊น์ด ์์ ํ ํฌ๊ธฐ
elif aspect_ratio == "4:3":
width, height = 512, 384 # 4:3์ ๊ฐ๊น์ด ์์ ํ ํฌ๊ธฐ
else:
width = height = 512
# 8์ ๋ฐฐ์๋ก ์กฐ์
width = (width // 8) * 8
height = (height // 8) * 8
return width, height
def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
try:
# ์์ ํ ํฌ๊ธฐ ๊ณ์ฐ
width, height = calculate_dimensions(aspect_ratio)
print(f"Generating background with size: {width}x{height}")
with timer("Background generation"):
try:
# ๋จผ์ 512x512๋ก ์์ฑ
with torch.inference_mode():
image = pipe(
prompt=prompt,
width=512,
height=512,
num_inference_steps=8,
guidance_scale=4.0,
).images[0]
# ์ํ๋ ํฌ๊ธฐ๋ก ๋ฆฌ์ฌ์ด์ฆ
if width != 512 or height != 512:
image = image.resize((width, height), Image.LANCZOS)
return image
except Exception as e:
print(f"Pipeline error: {str(e)}")
# ์๋ฌ ๋ฐ์ ์ ํฐ์ ๋ฐฐ๊ฒฝ ๋ฐํ
return Image.new('RGB', (width, height), 'white')
except Exception as e:
print(f"Background generation error: {str(e)}")
return Image.new('RGB', (512, 512), 'white')
def adjust_size_to_multiple_of_8(width: int, height: int) -> tuple[int, int]:
"""์ด๋ฏธ์ง ํฌ๊ธฐ๋ฅผ 8์ ๋ฐฐ์๋ก ์กฐ์ """
new_width = max(8, ((width + 7) // 8) * 8) # ์ต์ 8ํฝ์
๋ณด์ฅ
new_height = max(8, ((height + 7) // 8) * 8) # ์ต์ 8ํฝ์
๋ณด์ฅ
return new_width, new_height
def create_position_grid():
return """
<div class="position-grid" style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; width: 150px; margin: auto;">
<button class="position-btn" data-pos="top-left">โ</button>
<button class="position-btn" data-pos="top-center">โ</button>
<button class="position-btn" data-pos="top-right">โ</button>
<button class="position-btn" data-pos="middle-left">โ</button>
<button class="position-btn" data-pos="middle-center">โข</button>
<button class="position-btn" data-pos="middle-right">โ</button>
<button class="position-btn" data-pos="bottom-left">โ</button>
<button class="position-btn" data-pos="bottom-center" data-default="true">โ</button>
<button class="position-btn" data-pos="bottom-right">โ</button>
</div>
"""
def calculate_object_position(position: str, bg_size: tuple[int, int], obj_size: tuple[int, int]) -> tuple[int, int]:
"""์ค๋ธ์ ํธ์ ์์น ๊ณ์ฐ"""
bg_width, bg_height = bg_size
obj_width, obj_height = obj_size
positions = {
"top-left": (0, 0),
"top-center": ((bg_width - obj_width) // 2, 0),
"top-right": (bg_width - obj_width, 0),
"middle-left": (0, (bg_height - obj_height) // 2),
"middle-center": ((bg_width - obj_width) // 2, (bg_height - obj_height) // 2),
"middle-right": (bg_width - obj_width, (bg_height - obj_height) // 2),
"bottom-left": (0, bg_height - obj_height),
"bottom-center": ((bg_width - obj_width) // 2, bg_height - obj_height),
"bottom-right": (bg_width - obj_width, bg_height - obj_height)
}
return positions.get(position, positions["bottom-center"])
def resize_object(image: Image.Image, scale_percent: float) -> Image.Image:
"""์ค๋ธ์ ํธ ํฌ๊ธฐ ์กฐ์ """
width = int(image.width * scale_percent / 100)
height = int(image.height * scale_percent / 100)
return image.resize((width, height), Image.Resampling.LANCZOS)
def combine_with_background(foreground: Image.Image, background: Image.Image,
position: str = "bottom-center", scale_percent: float = 100) -> Image.Image:
"""์ ๊ฒฝ๊ณผ ๋ฐฐ๊ฒฝ ํฉ์ฑ ํจ์"""
# ๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง ์ค๋น
result = background.convert('RGBA')
# ์ค๋ธ์ ํธ ํฌ๊ธฐ ์กฐ์
scaled_foreground = resize_object(foreground, scale_percent)
# ์ค๋ธ์ ํธ ์์น ๊ณ์ฐ
x, y = calculate_object_position(position, result.size, scaled_foreground.size)
# ํฉ์ฑ
result.paste(scaled_foreground, (x, y), scaled_foreground)
return result
@spaces.GPU(duration=20) # 30์ด์์ 20์ด๋ก ๊ฐ์
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
try:
with torch.inference_mode(), torch.amp.autocast('cuda', enabled=torch.cuda.is_available()):
if isinstance(prompt, str):
bbox = gd_detect(img, prompt)
if not bbox:
raise gr.Error("No object detected in image")
else:
bbox = prompt
mask = segmenter(img, bbox)
return mask, bbox, []
except Exception as e:
print(f"GPU process error: {str(e)}")
raise
finally:
clear_memory()
def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
try:
# ์
๋ ฅ ์ด๋ฏธ์ง ํฌ๊ธฐ ์ ํ
max_size = 1024
if img.width > max_size or img.height > max_size:
ratio = max_size / max(img.width, img.height)
new_size = (int(img.width * ratio), int(img.height * ratio))
img = img.resize(new_size, Image.LANCZOS)
# CUDA ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ
if torch.cuda.is_available():
torch.cuda.empty_cache()
# ์๋ก์ด autocast ๊ตฌ๋ฌธ ์ฌ์ฉ
with torch.amp.autocast('cuda', enabled=torch.cuda.is_available()):
mask, bbox, time_log = _gpu_process(img, prompt)
masked_alpha = apply_mask(img, mask, defringe=True)
if bg_prompt:
background = generate_background(bg_prompt, aspect_ratio)
combined = background
else:
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
clear_memory()
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp:
combined.save(temp.name)
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
except Exception as e:
clear_memory()
print(f"Processing error: {str(e)}")
raise gr.Error(f"Processing failed: {str(e)}")
def on_change_bbox(prompts: dict[str, Any] | None):
return gr.update(interactive=prompts is not None)
def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
return gr.update(interactive=bool(img and prompt))
def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None,
aspect_ratio: str = "1:1", position: str = "bottom-center",
scale_percent: float = 100) -> tuple[Image.Image, Image.Image]:
try:
if img is None or not prompt or prompt.isspace():
raise gr.Error("Please provide both image and prompt")
print(f"Processing with position: {position}, scale: {scale_percent}") # ๋๋ฒ๊น
์ฉ
# ์
๋ ฅ ์ด๋ฏธ์ง ํฌ๊ธฐ ์ ํ
max_size = 1024
if img.width > max_size or img.height > max_size:
ratio = max_size / max(img.width, img.height)
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
# ๋ฒ์ญ ์ฒ๋ฆฌ
translated_prompt = translate_to_english(prompt)
translated_bg_prompt = translate_to_english(bg_prompt) if bg_prompt else None
# ์ด๋ฏธ์ง ์ฒ๋ฆฌ
with torch.inference_mode():
results, _ = _process(img, translated_prompt, translated_bg_prompt, aspect_ratio)
if translated_bg_prompt:
try:
combined = combine_with_background(
foreground=results[2],
background=results[1],
position=position,
scale_percent=scale_percent # scale_slider๊ฐ ์๋ scale_percent ์ฌ์ฉ
)
return combined, results[2]
except Exception as e:
print(f"Background combination error: {e}")
return results[1], results[2]
return results[1], results[2]
except Exception as e:
print(f"Process error: {str(e)}")
raise gr.Error(str(e))
finally:
clear_memory()
def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]:
try:
if img is None or box_input.strip() == "":
raise gr.Error("Please provide both image and bounding box coordinates")
try:
coords = eval(box_input)
if not isinstance(coords, list) or len(coords) != 4:
raise ValueError("Invalid box format")
bbox = tuple(int(x) for x in coords)
except:
raise gr.Error("Invalid box format. Please provide [xmin, ymin, xmax, ymax]")
# Process the image
results, _ = _process(img, bbox)
# ํฉ์ฑ๋ ์ด๋ฏธ์ง์ ์ถ์ถ๋ ์ด๋ฏธ์ง๋ง ๋ฐํ
return results[1], results[2]
except Exception as e:
raise gr.Error(str(e))
# Event handler functions ์์
def update_process_button(img, prompt):
return gr.update(
interactive=bool(img and prompt),
variant="primary" if bool(img and prompt) else "secondary"
)
def update_box_button(img, box_input):
try:
if img and box_input:
coords = eval(box_input)
if isinstance(coords, list) and len(coords) == 4:
return gr.update(interactive=True, variant="primary")
return gr.update(interactive=False, variant="secondary")
except:
return gr.update(interactive=False, variant="secondary")
# CSS ์ ์
css = """
footer {display: none}
.main-title {
text-align: center;
margin: 2em 0;
padding: 1em;
background: #f7f7f7;
border-radius: 10px;
}
.main-title h1 {
color: #2196F3;
font-size: 2.5em;
margin-bottom: 0.5em;
}
.main-title p {
color: #666;
font-size: 1.2em;
}
.container {
max-width: 1200px;
margin: auto;
padding: 20px;
}
.tabs {
margin-top: 1em;
}
.input-group {
background: white;
padding: 1em;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.output-group {
background: white;
padding: 1em;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
button.primary {
background: #2196F3;
border: none;
color: white;
padding: 0.5em 1em;
border-radius: 4px;
cursor: pointer;
transition: background 0.3s ease;
}
button.primary:hover {
background: #1976D2;
}
.position-btn {
transition: all 0.3s ease;
}
.position-btn:hover {
background-color: #e3f2fd;
}
.position-btn.selected {
background-color: #2196F3;
color: white;
}
"""
def get_image_base64(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode()
# ์ด๋ฏธ์ง๋ฅผ Base64๋ก ๋ณํ
try:
example_img1 = get_image_base64("aa1.png")
example_img2 = get_image_base64("aa2.png")
example_img3 = get_image_base64("aa3.png")
except Exception as e:
print(f"Error loading example images: {e}")
example_img1 = example_img2 = example_img3 = ""
# HTML ํ
ํ๋ฆฟ ์์
example_html = f"""
<div style="margin-top: 50px; padding: 20px; background-color: #f8f9fa; border-radius: 10px;">
<h2 style="text-align: center; color: #2196F3; margin-bottom: 30px;">How It Works: Step by Step Guide</h2>
<div style="display: flex; justify-content: space-around; align-items: center; flex-wrap: wrap; gap: 20px;">
<div style="text-align: center; flex: 1; min-width: 250px; max-width: 300px;">
<img src="data:image/png;base64,{example_img1}"
style="width: 100%; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<h3 style="color: #333; margin: 15px 0;">Step 1: Original Image</h3>
<p style="color: #666;">Upload your original image containing the object you want to extract.</p>
</div>
<div style="text-align: center; flex: 1; min-width: 250px; max-width: 300px;">
<img src="data:image/png;base64,{example_img2}"
style="width: 100%; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<h3 style="color: #333; margin: 15px 0;">Step 2: Object Extraction</h3>
<p style="color: #666;">AI automatically detects and extracts the specified object.</p>
</div>
<div style="text-align: center; flex: 1; min-width: 250px; max-width: 300px;">
<img src="data:image/png;base64,{example_img3}"
style="width: 100%; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<h3 style="color: #333; margin: 15px 0;">Step 3: Final Result</h3>
<p style="color: #666;">The extracted object is placed on an AI-generated background.</p>
</div>
</div>
<div style="margin-top: 30px; text-align: center; padding: 20px; background-color: #e3f2fd; border-radius: 8px;">
<h4 style="color: #1976D2; margin-bottom: 10px;">Key Features:</h4>
<ul style="list-style: none; padding: 0;">
<li style="margin: 5px 0;">โจ Advanced AI-powered object detection and extraction</li>
<li style="margin: 5px 0;">๐จ Custom background generation with text prompts</li>
<li style="margin: 5px 0;">๐ Flexible object positioning and sizing options</li>
<li style="margin: 5px 0;">๐ Multiple aspect ratio support for various use cases</li>
</ul>
</div>
</div>
"""
# UI ๊ตฌ์ฑ
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.HTML("""
<div class="main-title">
<h1>๐จGiniGen Canvas</h1>
<p>AI Integrated Image Creator: Extract objects, generate backgrounds, and adjust ratios and positions to create complete images with AI.</p>
</div>
""")
# ์์ ์น์
์ถ๊ฐ
gr.HTML(example_html)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
type="pil",
label="Upload Image",
interactive=True
)
text_prompt = gr.Textbox(
label="Object to Extract",
placeholder="Enter what you want to extract...",
interactive=True
)
with gr.Row():
bg_prompt = gr.Textbox(
label="Background Prompt (optional)",
placeholder="Describe the background...",
interactive=True,
scale=3
)
aspect_ratio = gr.Dropdown(
choices=["1:1", "16:9", "9:16", "4:3"],
value="1:1",
label="Aspect Ratio",
interactive=True,
visible=True,
scale=1
)
with gr.Row(visible=False) as object_controls:
with gr.Column(scale=1):
with gr.Row():
position = gr.State(value="bottom-center")
btn_top_left = gr.Button("โ")
btn_top_center = gr.Button("โ")
btn_top_right = gr.Button("โ")
with gr.Row():
btn_middle_left = gr.Button("โ")
btn_middle_center = gr.Button("โข")
btn_middle_right = gr.Button("โ")
with gr.Row():
btn_bottom_left = gr.Button("โ")
btn_bottom_center = gr.Button("โ")
btn_bottom_right = gr.Button("โ")
with gr.Column(scale=1):
scale_slider = gr.Slider(
minimum=10,
maximum=200,
value=100,
step=5,
label="Object Size (%)"
)
process_btn = gr.Button(
"Process",
variant="primary",
interactive=False
)
# ๊ฐ ๋ฒํผ์ ๋ํ ํด๋ฆญ ์ด๋ฒคํธ ์ฒ๋ฆฌ
def update_position(new_position):
return new_position
btn_top_left.click(fn=lambda: update_position("top-left"), outputs=position)
btn_top_center.click(fn=lambda: update_position("top-center"), outputs=position)
btn_top_right.click(fn=lambda: update_position("top-right"), outputs=position)
btn_middle_left.click(fn=lambda: update_position("middle-left"), outputs=position)
btn_middle_center.click(fn=lambda: update_position("middle-center"), outputs=position)
btn_middle_right.click(fn=lambda: update_position("middle-right"), outputs=position)
btn_bottom_left.click(fn=lambda: update_position("bottom-left"), outputs=position)
btn_bottom_center.click(fn=lambda: update_position("bottom-center"), outputs=position)
btn_bottom_right.click(fn=lambda: update_position("bottom-right"), outputs=position)
with gr.Column(scale=1):
with gr.Row():
combined_image = gr.Image(
label="Combined Result",
show_download_button=True,
type="pil",
height=512
)
with gr.Row():
extracted_image = gr.Image(
label="Extracted Object",
show_download_button=True,
type="pil",
height=256
)
# Event bindings
input_image.change(
fn=update_process_button,
inputs=[input_image, text_prompt],
outputs=process_btn,
queue=False
)
text_prompt.change(
fn=update_process_button,
inputs=[input_image, text_prompt],
outputs=process_btn,
queue=False
)
def update_controls(bg_prompt):
is_visible = bool(bg_prompt)
return [
gr.update(visible=is_visible, interactive=is_visible), # aspect_ratio
gr.update(visible=is_visible), # object_controls
]
bg_prompt.change(
fn=update_controls,
inputs=bg_prompt,
outputs=[aspect_ratio, object_controls],
queue=False
)
process_btn.click(
fn=process_prompt,
inputs=[
input_image,
text_prompt,
bg_prompt,
aspect_ratio,
position,
scale_slider
],
outputs=[combined_image, extracted_image],
queue=True
)
demo.queue(max_size=5) # ํ ํฌ๊ธฐ ์ ํ
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
max_threads=2) # ์ค๋ ๋ ์ ์ ํ
|