Spaces:
Paused
Paused
File size: 48,190 Bytes
2eff0d8 2428f13 c311609 71036e1 2eff0d8 2428f13 2eff0d8 2428f13 e62f2fc 2428f13 2eff0d8 584e173 2eff0d8 584e173 2eff0d8 584e173 2eff0d8 584e173 2eff0d8 584e173 2eff0d8 584e173 2eff0d8 584e173 2eff0d8 b33ef2d 2eff0d8 b33ef2d 584e173 b33ef2d 2eff0d8 b33ef2d 2eff0d8 b33ef2d 584e173 b33ef2d 2eff0d8 b33ef2d 2eff0d8 584e173 b33ef2d 2eff0d8 b33ef2d 4ec9e49 b33ef2d 584e173 2eff0d8 b33ef2d 584e173 b33ef2d 584e173 b33ef2d 2eff0d8 b33ef2d 584e173 b33ef2d 584e173 b33ef2d 2eff0d8 4ec9e49 2eff0d8 584e173 2eff0d8 4ec9e49 b33ef2d 2eff0d8 584e173 2eff0d8 4ec9e49 b33ef2d 4ec9e49 b33ef2d 4ec9e49 b33ef2d 4ec9e49 b33ef2d 4ec9e49 b33ef2d 4ec9e49 b33ef2d 4ec9e49 b33ef2d 2eff0d8 433318a 4ec9e49 433318a 2eff0d8 6110eef 0205c92 2eff0d8 1bb836a 6110eef 8828356 6110eef 0205c92 6110eef 2eff0d8 6110eef 0205c92 8828356 6110eef 8828356 1bb836a 8828356 2eff0d8 6110eef 8828356 2eff0d8 6110eef 8828356 6110eef 1bb836a 6110eef 1fd13a0 0205c92 6110eef 8828356 6110eef 8828356 2eff0d8 8828356 6110eef 2eff0d8 584e173 71036e1 433318a 71036e1 433318a 71036e1 584e173 2eff0d8 7c76ec0 b33ef2d 4ec9e49 b33ef2d 2eff0d8 584e173 6110eef 2eff0d8 b33ef2d 2eff0d8 b33ef2d 584e173 2eff0d8 584e173 4ec9e49 86348fd 7c76ec0 b33ef2d 584e173 b33ef2d 7c76ec0 86348fd 0ac1314 7c76ec0 b33ef2d 7c76ec0 b33ef2d 7c76ec0 4ec9e49 e5d7eac 4ec9e49 7c76ec0 4ec9e49 e5d7eac 4ec9e49 7c76ec0 4ec9e49 7c76ec0 2eff0d8 b80a36c 584e173 6110eef 584e173 7c76ec0 584e173 0205c92 584e173 0205c92 584e173 8828356 584e173 8828356 2eff0d8 7c76ec0 584e173 7c76ec0 584e173 5aa4162 b33ef2d 0ac1314 86348fd 4ec9e49 86348fd 4ec9e49 86348fd 0ac1314 86348fd 0ac1314 7c76ec0 b33ef2d 7c76ec0 5aa4162 7c76ec0 b33ef2d 5aa4162 b33ef2d 584e173 5aa4162 584e173 5aa4162 2eff0d8 5aa4162 2eff0d8 5aa4162 2eff0d8 5aa4162 2eff0d8 168fce2 7c76ec0 168fce2 6110eef 584e173 168fce2 5aa4162 168fce2 2eff0d8 c311609 584e173 2eff0d8 584e173 168fce2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 |
import tempfile
import time
from collections.abc import Sequence
from typing import Any, cast
import os
from huggingface_hub import login, hf_hub_download
import gradio as gr
import numpy as np
import pillow_heif
import spaces
import torch
from gradio_image_annotation import image_annotator
from gradio_imageslider import ImageSlider
from PIL import Image
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
from refiners.fluxion.utils import no_grad
from refiners.solutions import BoxSegmenter
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
from diffusers import FluxPipeline
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import gc
from PIL import Image, ImageDraw, ImageFont
from PIL import Image
from gradio_client import Client, handle_file
import uuid
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from transformers import pipeline
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
def initialize_ui():
"""UI ์ด๊ธฐํ ํจ์"""
return {
"position": "bottom-center",
"processing_status": "idle",
"status_message": gr.update(visible=False)
}
def debug_event(event_name, *args):
"""์ด๋ฒคํธ ๋๋ฒ๊น
์ ํธ๋ฆฌํฐ"""
print(f"Event '{event_name}' triggered at {time.strftime('%H:%M:%S')}")
print(f"Arguments: {args}")
return args
def clear_memory():
"""๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์"""
gc.collect()
try:
if torch.cuda.is_available():
with torch.cuda.device(0): # ๋ช
์์ ์ผ๋ก device 0 ์ฌ์ฉ
torch.cuda.empty_cache()
except:
pass
# GPU ์ค์
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # ๋ช
์์ ์ผ๋ก cuda:0 ์ง์
# GPU ์ค์ ์ try-except๋ก ๊ฐ์ธ๊ธฐ
if torch.cuda.is_available():
try:
with torch.cuda.device(0):
torch.cuda.empty_cache()
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
except:
print("Warning: Could not configure CUDA settings")
# ๋ฒ์ญ ๋ชจ๋ธ ์ด๊ธฐํ
model_name = "Helsinki-NLP/opus-mt-ko-en"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to('cpu')
translator = pipeline("translation", model=model, tokenizer=tokenizer, device=-1)
def translate_to_english(text: str) -> str:
"""ํ๊ธ ํ
์คํธ๋ฅผ ์์ด๋ก ๋ฒ์ญ"""
try:
if any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in text):
translated = translator(text, max_length=128)[0]['translation_text']
print(f"Translated '{text}' to '{translated}'")
return translated
return text
except Exception as e:
print(f"Translation error: {str(e)}")
return text
BoundingBox = tuple[int, int, int, int]
pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()
# HF ํ ํฐ ์ค์
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("Please set the HF_TOKEN environment variable")
try:
login(token=HF_TOKEN)
except Exception as e:
raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
# ๋ชจ๋ธ ์ด๊ธฐํ
segmenter = BoxSegmenter(device="cpu")
segmenter.device = device
segmenter.model = segmenter.model.to(device=segmenter.device)
gd_model_path = "IDEA-Research/grounding-dino-base"
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
gd_model = gd_model.to(device=device)
assert isinstance(gd_model, GroundingDinoForObjectDetection)
# FLUX ํ์ดํ๋ผ์ธ ์ด๊ธฐํ
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.float16,
use_auth_token=HF_TOKEN
)
pipe.enable_attention_slicing(slice_size="auto")
# LoRA ๊ฐ์ค์น ๋ก๋
pipe.load_lora_weights(
hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
use_auth_token=HF_TOKEN
)
)
pipe.fuse_lora(lora_scale=0.125)
# GPU ์ค์ ์ try-except๋ก ๊ฐ์ธ๊ธฐ
try:
if torch.cuda.is_available():
pipe = pipe.to("cuda:0") # ๋ช
์์ ์ผ๋ก cuda:0 ์ง์
except Exception as e:
print(f"Warning: Could not move pipeline to CUDA: {str(e)}")
#------------------------------- ์ด๋ฏธ์ง ์ธํ์ธํ
----------------------
client = Client("NabeelShar/BiRefNet_for_text_writing")
MODELS = {
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
}
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
).to("cuda")
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
def translate_if_korean(text):
# ์
๋ ฅ๋ ํ
์คํธ๊ฐ ํ๊ธ์ ํฌํจํ๊ณ ์๋์ง ํ์ธ
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in text):
# ํ๊ธ์ด ํฌํจ๋์ด ์๋ค๋ฉด ๋ฒ์ญ
translated = translator(text)[0]['translation_text']
print(f"Translated prompt: {translated}") # ๋๋ฒ๊น
์ ์ํ ์ถ๋ ฅ
return translated
return text
@spaces.GPU
def fill_image(prompt, image, model_selection):
# ํ๋กฌํํธ ๋ฒ์ญ
translated_prompt = translate_if_korean(prompt)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(translated_prompt, "cuda", True)
source = image["background"]
mask = image["layers"][0]
alpha_channel = mask.split()[3]
binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
cnet_image = source.copy()
cnet_image.paste(0, (0, 0), binary_mask)
for image in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=cnet_image,
):
yield image, cnet_image
image = image.convert("RGBA")
cnet_image.paste(image, (0, 0), binary_mask)
yield source, cnet_image
def clear_result():
return gr.update(value=None)
def process_inpainting(image, mask_input, prompt):
"""์ด๋ฏธ์ง ์ธํ์ธํ
์ฒ๋ฆฌ ํจ์"""
try:
if image is None or mask_input is None or not prompt:
raise gr.Error("Please provide image, mask, and prompt")
# ํ๋กฌํํธ ๋ฒ์ญ (ํ๊ธ์ธ ๊ฒฝ์ฐ)
translated_prompt = translate_if_korean(prompt)
# ๋ง์คํฌ ์ฒ๋ฆฌ
source = image
if isinstance(mask_input, dict):
mask = mask_input["layers"][0]
alpha_channel = mask.split()[3]
binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
else:
raise gr.Error("Invalid mask input")
# ์ธํ์ธํ
์ ์ํ ์ด๋ฏธ์ง ์ค๋น
cnet_image = source.copy()
cnet_image.paste(0, (0, 0), binary_mask)
# ํ๋กฌํํธ ์๋ฒ ๋ฉ
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(translated_prompt, "cuda", True)
# ์ธํ์ธํ
์คํ
result = None
for image in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=cnet_image,
):
result = image
if result is None:
raise gr.Error("Inpainting failed")
# ๊ฒฐ๊ณผ ์ด๋ฏธ์ง ์ฒ๋ฆฌ
result = result.convert("RGBA")
cnet_image.paste(result, (0, 0), binary_mask)
return cnet_image
except Exception as e:
print(f"Inpainting error: {str(e)}")
raise gr.Error(f"Inpainting failed: {str(e)}")
finally:
clear_memory()
#--------------- ์ด๋ฏธ์ง ์ธํ์ธํ
๋ ----------------
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
if not bboxes:
return None
for bbox in bboxes:
assert len(bbox) == 4
assert all(isinstance(x, int) for x in bbox)
return (
min(bbox[0] for bbox in bboxes),
min(bbox[1] for bbox in bboxes),
max(bbox[2] for bbox in bboxes),
max(bbox[3] for bbox in bboxes),
)
def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor:
x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1)
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)
with no_grad():
outputs = gd_model(**inputs)
width, height = img.size
results: dict[str, Any] = gd_processor.post_process_grounded_object_detection(
outputs,
inputs["input_ids"],
target_sizes=[(height, width)],
)[0]
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
return bbox_union(bboxes.numpy().tolist())
def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image:
assert img.size == mask_img.size
img = img.convert("RGB")
mask_img = mask_img.convert("L")
if defringe:
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
img = Image.fromarray((foreground * 255).astype("uint8"))
result = Image.new("RGBA", img.size)
result.paste(img, (0, 0), mask_img)
return result
def adjust_size_to_multiple_of_8(width: int, height: int) -> tuple[int, int]:
"""์ด๋ฏธ์ง ํฌ๊ธฐ๋ฅผ 8์ ๋ฐฐ์๋ก ์กฐ์ ํ๋ ํจ์"""
new_width = ((width + 7) // 8) * 8
new_height = ((height + 7) // 8) * 8
return new_width, new_height
def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int, int]:
"""์ ํ๋ ๋น์จ์ ๋ฐ๋ผ ์ด๋ฏธ์ง ํฌ๊ธฐ ๊ณ์ฐ"""
if aspect_ratio == "1:1":
return base_size, base_size
elif aspect_ratio == "16:9":
return base_size * 16 // 9, base_size
elif aspect_ratio == "9:16":
return base_size, base_size * 16 // 9
elif aspect_ratio == "4:3":
return base_size * 4 // 3, base_size
return base_size, base_size
@spaces.GPU(duration=20) # 40์ด์์ 20์ด๋ก ๊ฐ์
def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
try:
width, height = calculate_dimensions(aspect_ratio)
width, height = adjust_size_to_multiple_of_8(width, height)
max_size = 768
if width > max_size or height > max_size:
ratio = max_size / max(width, height)
width = int(width * ratio)
height = int(height * ratio)
width, height = adjust_size_to_multiple_of_8(width, height)
with timer("Background generation"):
try:
with torch.inference_mode():
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=8,
guidance_scale=4.0
).images[0]
except Exception as e:
print(f"Pipeline error: {str(e)}")
return Image.new('RGB', (width, height), 'white')
return image
except Exception as e:
print(f"Background generation error: {str(e)}")
return Image.new('RGB', (512, 512), 'white')
def create_position_grid():
return """
<div class="position-grid" style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; width: 150px; margin: auto;">
<button class="position-btn" data-pos="top-left">โ</button>
<button class="position-btn" data-pos="top-center">โ</button>
<button class="position-btn" data-pos="top-right">โ</button>
<button class="position-btn" data-pos="middle-left">โ</button>
<button class="position-btn" data-pos="middle-center">โข</button>
<button class="position-btn" data-pos="middle-right">โ</button>
<button class="position-btn" data-pos="bottom-left">โ</button>
<button class="position-btn" data-pos="bottom-center" data-default="true">โ</button>
<button class="position-btn" data-pos="bottom-right">โ</button>
</div>
"""
def calculate_object_position(position: str, bg_size: tuple[int, int], obj_size: tuple[int, int]) -> tuple[int, int]:
"""์ค๋ธ์ ํธ์ ์์น ๊ณ์ฐ"""
bg_width, bg_height = bg_size
obj_width, obj_height = obj_size
positions = {
"top-left": (0, 0),
"top-center": ((bg_width - obj_width) // 2, 0),
"top-right": (bg_width - obj_width, 0),
"middle-left": (0, (bg_height - obj_height) // 2),
"middle-center": ((bg_width - obj_width) // 2, (bg_height - obj_height) // 2),
"middle-right": (bg_width - obj_width, (bg_height - obj_height) // 2),
"bottom-left": (0, bg_height - obj_height),
"bottom-center": ((bg_width - obj_width) // 2, bg_height - obj_height),
"bottom-right": (bg_width - obj_width, bg_height - obj_height)
}
return positions.get(position, positions["bottom-center"])
def resize_object(image: Image.Image, scale_percent: float) -> Image.Image:
"""์ค๋ธ์ ํธ ํฌ๊ธฐ ์กฐ์ """
width = int(image.width * scale_percent / 100)
height = int(image.height * scale_percent / 100)
return image.resize((width, height), Image.Resampling.LANCZOS)
def combine_with_background(foreground: Image.Image, background: Image.Image,
position: str = "bottom-center", scale_percent: float = 100) -> Image.Image:
"""์ ๊ฒฝ๊ณผ ๋ฐฐ๊ฒฝ ํฉ์ฑ ํจ์"""
print(f"Combining with position: {position}, scale: {scale_percent}")
result = background.convert('RGBA')
scaled_foreground = resize_object(foreground, scale_percent)
x, y = calculate_object_position(position, result.size, scaled_foreground.size)
print(f"Calculated position coordinates: ({x}, {y})")
result.paste(scaled_foreground, (x, y), scaled_foreground)
return result
@spaces.GPU(duration=30) # 120์ด์์ 30์ด๋ก ๊ฐ์
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
time_log: list[str] = []
try:
if isinstance(prompt, str):
t0 = time.time()
bbox = gd_detect(img, prompt)
time_log.append(f"detect: {time.time() - t0}")
if not bbox:
print(time_log[0])
raise gr.Error("No object detected")
else:
bbox = prompt
t0 = time.time()
mask = segmenter(img, bbox)
time_log.append(f"segment: {time.time() - t0}")
return mask, bbox, time_log
except Exception as e:
print(f"GPU process error: {str(e)}")
raise
def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
try:
# ์
๋ ฅ ์ด๋ฏธ์ง ํฌ๊ธฐ ์ ํ
max_size = 1024
if img.width > max_size or img.height > max_size:
ratio = max_size / max(img.width, img.height)
new_size = (int(img.width * ratio), int(img.height * ratio))
img = img.resize(new_size, Image.LANCZOS)
# CUDA ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ์์
try:
if torch.cuda.is_available():
current_device = torch.cuda.current_device()
with torch.cuda.device(current_device):
torch.cuda.empty_cache()
except Exception as e:
print(f"CUDA memory management failed: {e}")
with torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
mask, bbox, time_log = _gpu_process(img, prompt)
masked_alpha = apply_mask(img, mask, defringe=True)
if bg_prompt:
background = generate_background(bg_prompt, aspect_ratio)
combined = background
else:
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
clear_memory()
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp:
combined.save(temp.name)
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
except Exception as e:
clear_memory()
print(f"Processing error: {str(e)}")
raise gr.Error(f"Processing failed: {str(e)}")
def on_change_bbox(prompts: dict[str, Any] | None):
return gr.update(interactive=prompts is not None)
def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
return gr.update(interactive=bool(img and prompt))
def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None,
aspect_ratio: str = "1:1", position: str = "bottom-center",
scale_percent: float = 100) -> tuple[Image.Image, Image.Image]:
try:
if img is None or prompt.strip() == "":
raise gr.Error("Please provide both image and prompt")
print(f"Processing with position: {position}, scale: {scale_percent}") # ๋๋ฒ๊น
์ฉ
try:
prompt = translate_to_english(prompt)
if bg_prompt:
bg_prompt = translate_to_english(bg_prompt)
except Exception as e:
print(f"Translation error (continuing with original text): {str(e)}")
results, _ = _process(img, prompt, bg_prompt, aspect_ratio)
if bg_prompt:
try:
print(f"Using position: {position}") # ๋๋ฒ๊น
์ฉ
# ์์น ๊ฐ ๊ฒ์ฆ
valid_positions = ["top-left", "top-center", "top-right",
"middle-left", "middle-center", "middle-right",
"bottom-left", "bottom-center", "bottom-right"]
if position not in valid_positions:
position = "bottom-center"
print(f"Invalid position, using default: {position}")
combined = combine_with_background(
foreground=results[2],
background=results[1],
position=position,
scale_percent=scale_percent
)
return combined, results[2]
except Exception as e:
print(f"Combination error: {str(e)}")
return results[1], results[2]
return results[1], results[2] # ๊ธฐ๋ณธ ๋ฐํ ์ถ๊ฐ
except Exception as e:
print(f"Error in process_prompt: {str(e)}")
raise gr.Error(str(e))
finally:
clear_memory()
def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]:
try:
if img is None or box_input.strip() == "":
raise gr.Error("Please provide both image and bounding box coordinates")
try:
coords = eval(box_input)
if not isinstance(coords, list) or len(coords) != 4:
raise ValueError("Invalid box format")
bbox = tuple(int(x) for x in coords)
except:
raise gr.Error("Invalid box format. Please provide [xmin, ymin, xmax, ymax]")
# Process the image
results, _ = _process(img, bbox)
# ํฉ์ฑ๋ ์ด๋ฏธ์ง์ ์ถ์ถ๋ ์ด๋ฏธ์ง๋ง ๋ฐํ
return results[1], results[2]
except Exception as e:
raise gr.Error(str(e))
# Event handler functions ์์
def update_process_button(img, prompt):
return gr.update(
interactive=bool(img and prompt),
variant="primary" if bool(img and prompt) else "secondary"
)
def update_box_button(img, box_input):
try:
if img and box_input:
coords = eval(box_input)
if isinstance(coords, list) and len(coords) == 4:
return gr.update(interactive=True, variant="primary")
return gr.update(interactive=False, variant="secondary")
except:
return gr.update(interactive=False, variant="secondary")
css = """
/* ๊ธฐ๋ณธ ๋ ์ด์์ */
footer {display: none !important}
body {background: #f5f7fa !important}
/* ๋ฉ์ธ ํ์ดํ */
.main-title {
text-align: center;
margin: 1.5em auto;
padding: 2em;
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
border-radius: 15px;
box-shadow: 0 8px 16px rgba(0,0,0,0.1);
max-width: 1200px;
}
.main-title h1 {
color: #2196F3;
font-size: 3em;
margin-bottom: 0.5em;
font-weight: 700;
text-shadow: 2px 2px 4px rgba(0,0,0,0.1);
}
.main-title p {
color: #555;
font-size: 1.4em;
line-height: 1.6;
max-width: 800px;
margin: 0 auto;
}
/* ํญ ์คํ์ผ๋ง */
.tabs-container {
margin-top: 1em;
}
.tab-nav {
pointer-events: auto !important;
cursor: pointer !important;
border-bottom: 2px solid #e0e0e0;
margin-bottom: 1em;
}
.tab-nav button {
pointer-events: auto !important;
cursor: pointer !important;
padding: 0.8em 1.2em;
margin-right: 0.5em;
border: none;
background: none;
color: #666;
transition: all 0.3s ease;
}
.tab-nav button:hover {
color: #2196F3;
background: rgba(33, 150, 243, 0.1);
}
.tab-nav button.selected {
color: #2196F3;
border-bottom: 2px solid #2196F3;
font-weight: bold;
}
/* ํจ๋ ์คํ์ผ๋ง */
.input-panel, .output-panel {
background: white;
padding: 2em;
border-radius: 15px;
box-shadow: 0 4px 12px rgba(0,0,0,0.05);
margin-bottom: 1.5em;
transition: all 0.3s ease;
}
.input-panel:hover, .output-panel:hover {
box-shadow: 0 6px 16px rgba(0,0,0,0.1);
}
/* ์ปจํธ๋กค ํจ๋ */
.controls-panel {
background: #f8f9fa;
padding: 1.5em;
border-radius: 12px;
margin: 1.5em 0;
border: 1px solid #e9ecef;
}
/* ์ด๋ฏธ์ง ๋์คํ๋ ์ด */
.image-display {
min-height: 512px;
display: flex;
align-items: center;
justify-content: center;
background: #fafafa;
border-radius: 12px;
margin: 1.5em 0;
border: 2px dashed #e0e0e0;
}
/* ๋ฒํผ ์คํ์ผ๋ง */
.position-btn {
padding: 12px !important;
border: 2px solid #ddd !important;
border-radius: 8px !important;
background: white !important;
cursor: pointer !important;
transition: all 0.2s ease !important;
width: 48px !important;
height: 48px !important;
display: flex !important;
align-items: center !important;
justify-content: center !important;
font-size: 1.2em !important;
margin: 4px !important;
pointer-events: auto !important;
}
.position-btn:hover {
background: #e3f2fd !important;
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
}
.position-btn.selected {
background-color: #2196F3 !important;
color: white !important;
border-color: #1976D2 !important;
box-shadow: 0 4px 12px rgba(33,150,243,0.3) !important;
}
/* ๊ทธ๋ฆฌ๋ ๋ ์ด์์ */
.position-grid {
display: grid;
grid-template-columns: repeat(3, 1fr);
gap: 10px;
margin: 1.5em 0;
padding: 10px;
background: #f5f5f5;
border-radius: 12px;
}
/* ์
๋ ฅ ํ๋ ์คํ์ผ๋ง */
input[type="text"], textarea {
border: 2px solid #e0e0e0 !important;
border-radius: 8px !important;
padding: 12px !important;
font-size: 1.1em !important;
transition: all 0.3s ease !important;
}
input[type="text"]:focus, textarea:focus {
border-color: #2196F3 !important;
box-shadow: 0 0 0 3px rgba(33,150,243,0.2) !important;
}
/* ์ฌ๋ผ์ด๋ ์คํ์ผ๋ง */
.slider-container {
margin: 1.5em 0;
}
.slider {
height: 6px !important;
background: #e0e0e0 !important;
border-radius: 3px !important;
}
.slider-handle {
width: 20px !important;
height: 20px !important;
background: #2196F3 !important;
border: 2px solid white !important;
box-shadow: 0 2px 4px rgba(0,0,0,0.2) !important;
}
/* ์ํ ๋ฉ์์ง */
.status-message {
padding: 10px;
border-radius: 8px;
margin: 10px 0;
font-size: 0.9em;
transition: all 0.3s ease;
animation: slideIn 0.3s ease-out;
}
.status-success {
background: #e8f5e9;
color: #2e7d32;
border: 1px solid #a5d6a7;
}
.status-error {
background: #ffebee;
color: #c62828;
border: 1px solid #ef9a9a;
}
/* ๋ฐ์ํ ๋์์ธ */
@media (max-width: 768px) {
.main-title h1 {
font-size: 2em;
}
.main-title p {
font-size: 1.1em;
}
.input-panel, .output-panel {
padding: 1em;
}
.position-btn {
width: 40px !important;
height: 40px !important;
font-size: 1em !important;
}
}
/* ์ ๋๋ฉ์ด์
ํจ๊ณผ */
@keyframes fadeIn {
from {opacity: 0; transform: translateY(10px);}
to {opacity: 1; transform: translateY(0);}
}
.fade-in {
animation: fadeIn 0.3s ease-out;
}
@keyframes slideIn {
from {
transform: translateY(-10px);
opacity: 0;
}
to {
transform: translateY(0);
opacity: 1;
}
}
/* ์ธํฐ๋ํฐ๋ธ ์์ ๊ณตํต ์คํ์ผ */
.interactive-element {
pointer-events: auto !important;
cursor: pointer !important;
user-select: none !important;
}
/* ๋ฒํผ ๊ณตํต ์คํ์ผ */
button, .button {
pointer-events: auto !important;
cursor: pointer !important;
user-select: none !important;
}
/* ํญ ์ปจํ
์ด๋ ์คํ์ผ */
.tabs-container {
pointer-events: auto !important;
}
.tab-item {
pointer-events: auto !important;
}
/* ํธ๋ฒ ํจ๊ณผ */
.interactive-element:hover {
transform: translateY(-1px);
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
}
/* ํด๋ฆญ ํจ๊ณผ */
.interactive-element:active {
transform: translateY(1px);
}
"""
js_code = """
<script>
document.addEventListener('DOMContentLoaded', function() {
function enableInteraction(selector) {
const elements = document.querySelectorAll(selector);
elements.forEach(el => {
el.style.pointerEvents = 'auto';
el.style.cursor = 'pointer';
});
}
// ํญ ํ์ฑํ
enableInteraction('.tab-nav button');
enableInteraction('.position-btn');
enableInteraction('.interactive-element');
// ๋ฒํผ ํด๋ฆญ ์ด๋ฒคํธ ๋ฆฌ์ค๋
document.querySelectorAll('.position-btn').forEach(btn => {
btn.addEventListener('click', function() {
document.querySelectorAll('.position-btn').forEach(b => b.classList.remove('selected'));
this.classList.add('selected');
});
});
});
</script>
"""
def add_text_with_stroke(draw, text, x, y, font, text_color, stroke_width):
"""Helper function to draw text with stroke"""
# Draw the stroke/outline
for adj_x in range(-stroke_width, stroke_width + 1):
for adj_y in range(-stroke_width, stroke_width + 1):
draw.text((x + adj_x, y + adj_y), text, font=font, fill=text_color)
def remove_background(image):
# Save the image to a specific location
filename = f"image_{uuid.uuid4()}.png" # Generates a universally unique identifier (UUID) for the filename
image.save(filename)
# Call gradio client for background removal
result = client.predict(images=handle_file(filename), api_name="/image")
return Image.open(result[0])
def superimpose(image_with_text, overlay_image):
# Open image as RGBA to handle transparency
overlay_image = overlay_image.convert("RGBA")
# Paste overlay on the background
image_with_text.paste(overlay_image, (0, 0), overlay_image)
# Save the final image
# image_with_text.save("output_image.png")
return image_with_text
def add_text_to_image(
input_image,
text,
font_size,
color,
opacity,
x_position,
y_position,
thickness,
text_position_type,
font_choice
):
try:
if input_image is None or text.strip() == "":
return input_image
# PIL Image ๊ฐ์ฒด๋ก ๋ณํ
if not isinstance(input_image, Image.Image):
if isinstance(input_image, np.ndarray):
image = Image.fromarray(input_image)
else:
raise ValueError("Unsupported image type")
else:
image = input_image.copy()
# ์ด๋ฏธ์ง๋ฅผ RGBA ๋ชจ๋๋ก ๋ณํ
if image.mode != 'RGBA':
image = image.convert('RGBA')
# ํฐํธ ์ค์
font_files = {
"Default": "DejaVuSans.ttf",
"Korean Regular": "ko-Regular.ttf"
}
try:
font_file = font_files.get(font_choice, "DejaVuSans.ttf")
font = ImageFont.truetype(font_file, int(font_size))
except Exception as e:
print(f"Font loading error ({font_choice}): {str(e)}")
font = ImageFont.load_default()
# ์์ ์ค์
color_map = {
'White': (255, 255, 255),
'Black': (0, 0, 0),
'Red': (255, 0, 0),
'Green': (0, 255, 0),
'Blue': (0, 0, 255),
'Yellow': (255, 255, 0),
'Purple': (128, 0, 128)
}
rgb_color = color_map.get(color, (255, 255, 255))
# ์์ Draw ๊ฐ์ฒด ์์ฑํ์ฌ ํ
์คํธ ํฌ๊ธฐ ๊ณ์ฐ
temp_draw = ImageDraw.Draw(image)
text_bbox = temp_draw.textbbox((0, 0), text, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
# ์์น ๊ณ์ฐ
actual_x = int((image.width - text_width) * (x_position / 100))
actual_y = int((image.height - text_height) * (y_position / 100))
# ํ
์คํธ ์์ ์ค์
text_color = (*rgb_color, int(opacity))
if text_position_type == "Text Behind Image":
try:
# ์๋ณธ ์ด๋ฏธ์ง์์ ์ ๊ฒฝ ๊ฐ์ฒด๋ง ์ถ์ถ
foreground = remove_background(image)
# ๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง ์์ฑ (์๋ณธ ์ด๋ฏธ์ง ๋ณต์ฌ)
background = image.copy()
# ํ
์คํธ๋ฅผ ๊ทธ๋ฆด ์์ ๋ ์ด์ด ์์ฑ
text_layer = Image.new('RGBA', image.size, (255, 255, 255, 0))
draw_text = ImageDraw.Draw(text_layer)
# ํ
์คํธ ๊ทธ๋ฆฌ๊ธฐ
add_text_with_stroke(
draw_text,
text,
actual_x,
actual_y,
font,
text_color,
int(thickness)
)
# ๋ฐฐ๊ฒฝ์ ํ
์คํธ ํฉ์ฑ
background = Image.alpha_composite(background, text_layer)
# ํ
์คํธ๊ฐ ์๋ ๋ฐฐ๊ฒฝ ์์ ์ ๊ฒฝ ๊ฐ์ฒด ํฉ์ฑ
output_image = Image.alpha_composite(background, foreground)
except Exception as e:
print(f"Error in Text Behind Image processing: {str(e)}")
return input_image
else:
# ํ
์คํธ ์ค๋ฒ๋ ์ด ์์ฑ
txt_overlay = Image.new('RGBA', image.size, (255, 255, 255, 0))
draw = ImageDraw.Draw(txt_overlay)
# ํ
์คํธ๋ฅผ ์ด๋ฏธ์ง ์์ ๊ทธ๋ฆฌ๊ธฐ
add_text_with_stroke(
draw,
text,
actual_x,
actual_y,
font,
text_color,
int(thickness)
)
output_image = Image.alpha_composite(image, txt_overlay)
# RGB๋ก ๋ณํ
output_image = output_image.convert('RGB')
return output_image
except Exception as e:
print(f"Error in add_text_to_image: {str(e)}")
return input_image
def update_position(new_position):
"""์์น ์
๋ฐ์ดํธ ํจ์"""
print(f"Position updated to: {new_position}")
return new_position
def update_position_and_ui(pos):
"""์์น ์
๋ฐ์ดํธ ๋ฐ UI ๋ฐ์"""
updates = {btn: gr.update(value="selected" if pos_val == pos else "")
for btn, pos_val in position_mapping.items()}
updates['position'] = pos
return [pos] + [updates[btn] for btn in position_mapping.keys()]
def process_inpainting_with_feedback(image, mask, prompt):
try:
result = process_inpainting(image, mask, prompt)
return result, update_status_message("Inpainting completed successfully!")
except Exception as e:
return None, update_status_message(f"Error: {str(e)}", is_error=True)
def update_controls(bg_prompt):
"""๋ฐฐ๊ฒฝ ํ๋กฌํํธ ์
๋ ฅ ์ฌ๋ถ์ ๋ฐ๋ผ ์ปจํธ๋กค ํ์ ์
๋ฐ์ดํธ"""
is_visible = bool(bg_prompt)
return [
gr.update(visible=is_visible), # aspect_ratio
gr.update(visible=is_visible), # object_controls
]
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
position = gr.State(value="bottom-center")
processing_status = gr.State(value="idle")
gr.HTML(js_code) # JavaScript ์ฝ๋ ์ถ๊ฐ
gr.HTML("""
<div class="main-title">
<h1>๐จ GiniGen Canvas-o3</h1>
<p>Remove background of specified objects, generate new backgrounds, and insert text over or behind images with prompts.</p>
</div>
""")
status_message = gr.HTML(
value='<div class="status-message"></div>',
visible=False
)
with gr.Row(equal_height=True):
# ์ผ์ชฝ ํจ๋ (์
๋ ฅ)
with gr.Column(scale=1):
with gr.Group(elem_classes="input-panel"):
with gr.Tabs(elem_classes="tabs-container") as tabs:
with gr.Tab("Image Upload & Inpainting", elem_classes="tab-item"):
input_image = gr.Image(
type="pil",
label="Upload Image",
interactive=True,
height=400,
elem_classes="fade-in"
)
with gr.Group():
inpaint_prompt = gr.Textbox(
label="Inpainting Prompt",
placeholder="Describe what you want to add in the masked area..."
)
mask_input = image_annotator(
label="Draw mask for inpainting",
height=400
)
inpaint_btn = gr.Button("Apply Inpainting", variant="primary")
# ๋ ๋ฒ์งธ ํญ: ๋ฐฐ๊ฒฝ ์ ๊ฑฐ ๋ฐ ์์ฑ
with gr.Tab("Background Removal", elem_classes="tab-item"):
text_prompt = gr.Textbox(
label="Object to Extract",
placeholder="Enter what you want to extract...",
interactive=True,
elem_classes="fade-in"
)
with gr.Row():
bg_prompt = gr.Textbox(
label="Background Prompt (optional)",
placeholder="Describe the background...",
interactive=True,
scale=3
)
aspect_ratio = gr.Dropdown(
choices=["1:1", "16:9", "9:16", "4:3"],
value="1:1",
label="Aspect Ratio",
interactive=True,
visible=True,
scale=1
)
with gr.Group(elem_classes="controls-panel", visible=False) as object_controls:
with gr.Column(scale=1):
with gr.Row():
btn_top_left = gr.Button("โ", elem_classes=["position-btn", "interactive-element"],interactive=True,variant="secondary")
btn_top_center = gr.Button("โ",elem_classes=["position-btn", "interactive-element"],interactive=True,variant="secondary")
btn_top_right = gr.Button("โ", elem_classes=["position-btn", "interactive-element"],interactive=True,variant="secondary")
with gr.Row():
btn_middle_left = gr.Button("โ", elem_classes=["position-btn", "interactive-element"],interactive=True,variant="secondary")
btn_middle_center = gr.Button("โข",elem_classes=["position-btn", "interactive-element"],interactive=True,variant="secondary")
btn_middle_right = gr.Button("โ", elem_classes=["position-btn", "interactive-element"],interactive=True,variant="secondary")
with gr.Row():
btn_bottom_left = gr.Button("โ", elem_classes=["position-btn", "interactive-element"],interactive=True,variant="secondary")
btn_bottom_center = gr.Button("โ", elem_classes=["position-btn", "interactive-element"],interactive=True,variant="secondary", value="selected")
btn_bottom_right = gr.Button("โ", elem_classes=["position-btn", "interactive-element"],interactive=True,variant="secondary")
with gr.Column(scale=1):
scale_slider = gr.Slider(
minimum=10,
maximum=200,
value=50,
step=5,
label="Object Size (%)"
)
process_btn = gr.Button(
"Process",
variant="primary",
interactive=False,
size="lg"
)
# ์ค๋ฅธ์ชฝ ํจ๋ (์ถ๋ ฅ)
with gr.Column(scale=1):
with gr.Group(elem_classes="output-panel"):
with gr.Tab("Result"):
combined_image = gr.Image(
label="Combined Result",
show_download_button=True,
type="pil",
height=400
)
with gr.Accordion("Text Insertion Options", open=False):
with gr.Group():
with gr.Row():
text_input = gr.Textbox(
label="Text Content",
placeholder="Enter text to add..."
)
text_position_type = gr.Radio(
choices=["Text Over Image", "Text Behind Image"],
value="Text Over Image",
label="Text Position"
)
with gr.Row():
with gr.Column(scale=1):
font_choice = gr.Dropdown(
choices=["Default", "Korean Regular"],
value="Default",
label="Font Selection",
interactive=True
)
font_size = gr.Slider(
minimum=10,
maximum=200,
value=40,
step=5,
label="Font Size"
)
color_dropdown = gr.Dropdown(
choices=["White", "Black", "Red", "Green", "Blue", "Yellow", "Purple"],
value="White",
label="Text Color"
)
thickness = gr.Slider(
minimum=0,
maximum=10,
value=1,
step=1,
label="Text Thickness"
)
with gr.Column(scale=1):
opacity_slider = gr.Slider(
minimum=0,
maximum=255,
value=255,
step=1,
label="Opacity"
)
x_position = gr.Slider(
minimum=0,
maximum=100,
value=50,
step=1,
label="Left(0%)~Right(100%)"
)
y_position = gr.Slider(
minimum=0,
maximum=100,
value=50,
step=1,
label="High(0%)~Low(100%)"
)
add_text_btn = gr.Button("Apply Text", variant="primary")
extracted_image = gr.Image(
label="Extracted Object",
show_download_button=True,
type="pil",
height=200
)
# CSS ์คํ์ผ
gr.HTML("""
<style>
.position-btn.selected {
background-color: #2196F3 !important;
color: white !important;
}
</style>
""")
# ์ด๋ฒคํธ ๋ฐ์ธ๋ฉ
position_mapping = {
btn_top_left: "top-left",
btn_top_center: "top-center",
btn_top_right: "top-right",
btn_middle_left: "middle-left",
btn_middle_center: "middle-center",
btn_middle_right: "middle-right",
btn_bottom_left: "bottom-left",
btn_bottom_center: "bottom-center",
btn_bottom_right: "bottom-right"
}
def update_status_message(message: str, is_error: bool = False) -> dict:
return {
"visible": True,
"value": f'<div class="status-message {"status-error" if is_error else "status-success"}">{message}</div>'
}
def update_ui_state(component_id, value, is_error=False):
class_name = "status-error" if is_error else "status-success"
return gr.update(
value=f'<div class="status-message {class_name}">{value}</div>',
visible=True
)
def handle_button_click(btn_pos):
"""๋ฒํผ ํด๋ฆญ ์ด๋ฒคํธ ํธ๋ค๋ฌ"""
print(f"Button clicked: {btn_pos}")
updates = {btn: gr.update(variant="secondary", value="") for btn in position_mapping.keys()}
updates[btn_pos] = gr.update(variant="primary", value="selected")
return [btn_pos] + [updates[btn] for btn in position_mapping.keys()]
# ๋ฒํผ ์ด๋ฒคํธ ๋ฐ์ธ๋ฉ
for btn, pos in position_mapping.items():
btn.click(
fn=handle_button_click,
inputs=[gr.State(pos)],
outputs=[position] + list(position_mapping.keys()),
api_name=f"btn_click_{pos}"
)
inpaint_btn.click(
fn=process_inpainting_with_feedback,
inputs=[input_image, mask_input, inpaint_prompt],
outputs=[input_image, status_message],
api_name="inpaint"
)
process_btn.click(
fn=process_prompt,
inputs=[
input_image,
text_prompt,
bg_prompt,
aspect_ratio,
position,
scale_slider
],
outputs=[combined_image, extracted_image, status_message],
api_name="process"
)
bg_prompt.change(
fn=update_controls,
inputs=bg_prompt,
outputs=[aspect_ratio, object_controls],
queue=False,
api_name="update_controls"
)
input_image.change(
fn=update_process_button,
inputs=[input_image, text_prompt],
outputs=process_btn,
queue=False,
api_name="update_process_button"
)
text_prompt.change(
fn=update_process_button,
inputs=[input_image, text_prompt],
outputs=process_btn,
queue=False,
api_name="update_text_prompt"
)
add_text_btn.click(
fn=add_text_to_image,
inputs=[
combined_image,
text_input,
font_size,
color_dropdown,
opacity_slider,
x_position,
y_position,
thickness,
text_position_type,
font_choice
],
outputs=[combined_image, status_message],
api_name="add_text"
)
demo.queue(max_size=5)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
max_threads=2
) |