Spaces:
Paused
Paused
File size: 15,004 Bytes
5dea862 64806f8 5dea862 64806f8 c83763a 64806f8 5dea862 7cea496 64806f8 5dea862 64806f8 5dea862 64806f8 5dea862 64806f8 7cea496 52df737 c23ced1 c699db9 5dea862 c699db9 5035677 7511d53 c699db9 5035677 7511d53 5035677 7511d53 5035677 7511d53 5035677 c699db9 52df737 c699db9 a0e7bff 7fb2129 a0e7bff c699db9 a0e7bff c699db9 64806f8 5dea862 a0e7bff 52df737 c23ced1 7cea496 5dea862 64806f8 c23ced1 a0fcee4 5035677 7cea496 5dea862 64806f8 5dea862 64806f8 a0e7bff 7fb2129 a0e7bff 5035677 5dea862 a0fcee4 5dea862 c23ced1 5dea862 a0fcee4 a0e7bff 5dea862 64806f8 5035677 a0e7bff c23ced1 5035677 64806f8 5dea862 64806f8 5dea862 64806f8 5dea862 28d91b7 5dea862 28d91b7 b885f28 783b884 b885f28 783b884 b885f28 783b884 b885f28 783b884 b885f28 64806f8 52df737 5dea862 64806f8 5dea862 783b884 5dea862 64806f8 5dea862 28d91b7 b1228ec 28d91b7 5dea862 28d91b7 5dea862 28d91b7 5dea862 64806f8 5dea862 64806f8 5dea862 64806f8 5dea862 64806f8 5dea862 28d91b7 64806f8 b1228ec 64806f8 5dea862 28d91b7 64806f8 783b884 64806f8 b1228ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
import os
import gc
import uuid
import random
import tempfile
import time
from datetime import datetime
from typing import Any
from huggingface_hub import login, hf_hub_download
import spaces
import gradio as gr
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
from diffusers import FluxPipeline
from transformers import pipeline
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์
def clear_memory():
gc.collect()
try:
if torch.cuda.is_available():
with torch.cuda.device(0):
torch.cuda.empty_cache()
except:
pass
# GPU ์ค์
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
try:
with torch.cuda.device(0):
torch.cuda.empty_cache()
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
except:
print("Warning: Could not configure CUDA settings")
# HF ํ ํฐ ์ค์
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("Please set the HF_TOKEN environment variable")
try:
login(token=HF_TOKEN)
except Exception as e:
raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=-1) # CPU์์ ์คํ
def translate_to_english(text: str) -> str:
"""ํ๊ธ ํ
์คํธ๋ฅผ ์์ด๋ก ๋ฒ์ญ"""
try:
if any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in text):
translated = translator(text, max_length=128)[0]['translation_text']
print(f"Translated '{text}' to '{translated}'")
return translated
return text
except Exception as e:
print(f"Translation error: {str(e)}")
return text
# FLUX ํ์ดํ๋ผ์ธ ์ด๊ธฐํ ๋ถ๋ถ ์์
print("Initializing FLUX pipeline...")
try:
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.float16,
use_auth_token=HF_TOKEN
)
print("FLUX pipeline initialized successfully")
# ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ ์ค์
pipe.enable_attention_slicing(slice_size=1)
# GPU ์ค์
if torch.cuda.is_available():
pipe = pipe.to("cuda:0")
torch.cuda.empty_cache()
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
print("Pipeline optimization settings applied")
except Exception as e:
print(f"Error initializing FLUX pipeline: {str(e)}")
raise
# LoRA ๊ฐ์ค์น ๋ก๋ ๋ถ๋ถ ์์
print("Loading LoRA weights...")
try:
# ๋ก์ปฌ LoRA ํ์ผ์ ์ ๋ ๊ฒฝ๋ก ํ์ธ
current_dir = os.path.dirname(os.path.abspath(__file__))
lora_path = os.path.join(current_dir, "myt-flux-fantasy.safetensors")
if not os.path.exists(lora_path):
raise FileNotFoundError(f"LoRA file not found at: {lora_path}")
print(f"Loading LoRA weights from: {lora_path}")
# LoRA ๊ฐ์ค์น ๋ก๋
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale=0.75) # lora_scale ๊ฐ ์กฐ์
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
torch.cuda.empty_cache()
gc.collect()
print("LoRA weights loaded and fused successfully")
print(f"Current device: {pipe.device}")
except Exception as e:
print(f"Error loading LoRA weights: {str(e)}")
print(f"Full error details: {repr(e)}")
raise ValueError(f"Failed to load LoRA weights: {str(e)}")
@spaces.GPU(duration=60)
def generate_image(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
progress: gr.Progress = gr.Progress()
):
try:
clear_memory()
translated_prompt = translate_to_english(prompt)
print(f"Processing prompt: {translated_prompt}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
print(f"Current device: {pipe.device}")
print(f"Starting image generation...")
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=True):
image = pipe(
prompt=translated_prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator,
num_images_per_prompt=1,
).images[0]
filepath = save_generated_image(image, translated_prompt)
print(f"Image generated and saved to: {filepath}")
return image, seed
except Exception as e:
print(f"Generation error: {str(e)}")
print(f"Full error details: {repr(e)}")
raise gr.Error(f"Image generation failed: {str(e)}")
finally:
clear_memory()
# ์ ์ฅ ๋๋ ํ ๋ฆฌ ์ค์
SAVE_DIR = "saved_images"
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def save_generated_image(image, prompt):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
image.save(filepath)
return filepath
def add_text_with_stroke(draw, text, x, y, font, text_color, stroke_width):
"""ํ
์คํธ์ ์ธ๊ณฝ์ ์ ์ถ๊ฐํ๋ ํจ์"""
for adj_x in range(-stroke_width, stroke_width + 1):
for adj_y in range(-stroke_width, stroke_width + 1):
draw.text((x + adj_x, y + adj_y), text, font=font, fill=text_color)
def add_text_to_image(
input_image,
text,
font_size,
color,
opacity,
x_position,
y_position,
thickness,
text_position_type,
font_choice
):
try:
if input_image is None or text.strip() == "":
return input_image
if not isinstance(input_image, Image.Image):
if isinstance(input_image, np.ndarray):
image = Image.fromarray(input_image)
else:
raise ValueError("Unsupported image type")
else:
image = input_image.copy()
if image.mode != 'RGBA':
image = image.convert('RGBA')
font_files = {
"Default": "DejaVuSans.ttf",
"Korean Regular": "ko-Regular.ttf"
}
try:
font_file = font_files.get(font_choice, "DejaVuSans.ttf")
font = ImageFont.truetype(font_file, int(font_size))
except Exception as e:
print(f"Font loading error ({font_choice}): {str(e)}")
font = ImageFont.load_default()
color_map = {
'White': (255, 255, 255),
'Black': (0, 0, 0),
'Red': (255, 0, 0),
'Green': (0, 255, 0),
'Blue': (0, 0, 255),
'Yellow': (255, 255, 0),
'Purple': (128, 0, 128)
}
rgb_color = color_map.get(color, (255, 255, 255))
temp_draw = ImageDraw.Draw(image)
text_bbox = temp_draw.textbbox((0, 0), text, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
actual_x = int((image.width - text_width) * (x_position / 100))
actual_y = int((image.height - text_height) * (y_position / 100))
text_color = (*rgb_color, int(opacity))
txt_overlay = Image.new('RGBA', image.size, (255, 255, 255, 0))
draw = ImageDraw.Draw(txt_overlay)
add_text_with_stroke(
draw,
text,
actual_x,
actual_y,
font,
text_color,
int(thickness)
)
output_image = Image.alpha_composite(image, txt_overlay)
output_image = output_image.convert('RGB')
return output_image
except Exception as e:
print(f"Error in add_text_to_image: {str(e)}")
return input_image
css = """
footer {display: none}
.main-title {
text-align: center;
margin: 1em 0;
padding: 1.5em;
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
border-radius: 15px;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
.main-title h1 {
color: #2196F3;
font-size: 2.8em;
margin-bottom: 0.3em;
font-weight: 700;
}
.main-title p {
color: #555;
font-size: 1.3em;
line-height: 1.4;
}
.container {
max-width: 1200px;
margin: auto;
padding: 20px;
}
.input-panel, .output-panel {
background: white;
padding: 1.5em;
border-radius: 12px;
box-shadow: 0 2px 8px rgba(0,0,0,0.08);
margin-bottom: 1em;
}
"""
import requests
def enhance_prompt(prompt: str) -> str:
"""ํ๋กฌํํธ๋ฅผ ์ ๋๋ฉ์ด์
์คํ์ผ๋ก ์ฆ๊ฐ"""
try:
# ๊ธฐ๋ณธ ํ์ง ํฅ์ ํ๋กฌํํธ ์ถ๊ฐ
enhancements = [
"masterpiece, best quality, highly detailed",
"anime style, animation style",
"vibrant colors, perfect lighting",
"professional composition",
"dynamic pose, expressive features",
"detailed background, perfect shadows",
"[trigger]"
]
# ์ ๋๋ฉ์ด์
์คํ์ผ ํ๋กฌํํธ ๋ณํ
anime_style_prompt = f"an animated {prompt}, detailed anime art style"
# ์ต์ข
ํ๋กฌํํธ ๊ตฌ์ฑ
final_prompt = f"{anime_style_prompt}, {', '.join(enhancements)}"
print(f"Enhanced prompt: {final_prompt}")
return final_prompt
except Exception as e:
print(f"Prompt enhancement failed: {str(e)}")
return prompt
# ๊ธฐ์กด์ pipeline ์ด๊ธฐํ ๋ถ๋ถ ์ ๊ฑฐ
# try:
# prompt_enhancer = pipeline(...)
# except Exception as e:
# print(f"Error initializing prompt enhancer: {str(e)}")
# prompt_enhancer = None
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.HTML("""
<div class="main-title">
<h1>๐จ Webtoon Studio</h1>
<p>Generate webtoon-style images and add text with various styles and positions.</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gen_prompt = gr.Textbox(
label="Generation Prompt",
placeholder="Enter your image generation prompt..."
)
enhance_btn = gr.Button("โจ Enhance Prompt", variant="secondary")
with gr.Row():
gen_width = gr.Slider(512, 1024, 768, step=64, label="Width")
gen_height = gr.Slider(512, 1024, 768, step=64, label="Height")
with gr.Row():
guidance_scale = gr.Slider(1, 20, 7.5, step=0.5, label="Guidance Scale")
num_steps = gr.Slider(1, 50, 30, step=1, label="Number of Steps")
with gr.Row():
seed = gr.Number(label="Seed", value=-1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
generate_btn = gr.Button("Generate Image", variant="primary")
output_image = gr.Image(
label="Generated Image",
type="pil",
show_download_button=True
)
output_seed = gr.Number(label="Used Seed", interactive=False)
# ํ
์คํธ ์ถ๊ฐ ์น์
with gr.Accordion("Text Options", open=False):
text_input = gr.Textbox(
label="Text Content",
placeholder="Enter text to add..."
)
text_position_type = gr.Radio(
choices=["Text Over Image"],
value="Text Over Image",
label="Text Position",
visible=True
)
with gr.Row():
font_choice = gr.Dropdown(
choices=["Default", "Korean Regular"],
value="Default",
label="Font Selection",
interactive=True
)
font_size = gr.Slider(
minimum=10,
maximum=200,
value=40,
step=5,
label="Font Size"
)
with gr.Row():
color_dropdown = gr.Dropdown(
choices=["White", "Black", "Red", "Green", "Blue", "Yellow", "Purple"],
value="White",
label="Text Color"
)
thickness = gr.Slider(
minimum=0,
maximum=10,
value=1,
step=1,
label="Text Thickness"
)
with gr.Row():
opacity_slider = gr.Slider(
minimum=0,
maximum=255,
value=255,
step=1,
label="Opacity"
)
with gr.Row():
x_position = gr.Slider(
minimum=0,
maximum=100,
value=50,
step=1,
label="Left(0%)~Right(100%)"
)
y_position = gr.Slider(
minimum=0,
maximum=100,
value=50,
step=1,
label="High(0%)~Low(100%)"
)
add_text_btn = gr.Button("Apply Text", variant="primary")
# ์ด๋ฒคํธ ๋ฐ์ธ๋ฉ
generate_btn.click(
fn=generate_image,
inputs=[
gen_prompt,
seed,
randomize_seed,
gen_width,
gen_height,
guidance_scale,
num_steps,
],
outputs=[output_image, output_seed]
)
add_text_btn.click(
fn=add_text_to_image,
inputs=[
output_image,
text_input,
font_size,
color_dropdown,
opacity_slider,
x_position,
y_position,
thickness,
text_position_type,
font_choice
],
outputs=output_image
)
# ์ด๋ฒคํธ ๋ฐ์ธ๋ฉ ์ถ๊ฐ
def update_prompt(prompt):
enhanced = enhance_prompt(prompt)
return enhanced
enhance_btn.click(
fn=update_prompt,
inputs=[gen_prompt],
outputs=[gen_prompt]
)
demo.queue(max_size=5)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
max_threads=2
) |