Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,48 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import tempfile
|
| 2 |
import time
|
| 3 |
-
from
|
| 4 |
-
from typing import Any
|
| 5 |
-
import os
|
| 6 |
from huggingface_hub import login, hf_hub_download
|
| 7 |
|
| 8 |
import gradio as gr
|
| 9 |
import numpy as np
|
| 10 |
-
import pillow_heif
|
| 11 |
-
import spaces
|
| 12 |
import torch
|
| 13 |
-
from gradio_image_annotation import image_annotator
|
| 14 |
-
from gradio_imageslider import ImageSlider
|
| 15 |
-
from PIL import Image
|
| 16 |
-
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
|
| 17 |
-
from refiners.fluxion.utils import no_grad
|
| 18 |
-
from refiners.solutions import BoxSegmenter
|
| 19 |
-
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
|
| 20 |
-
from diffusers import FluxPipeline
|
| 21 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 22 |
-
import gc
|
| 23 |
-
|
| 24 |
from PIL import Image, ImageDraw, ImageFont
|
| 25 |
-
from
|
| 26 |
-
from gradio_client import Client, handle_file
|
| 27 |
-
import uuid
|
| 28 |
-
|
| 29 |
-
import random
|
| 30 |
-
from datetime import datetime
|
| 31 |
|
|
|
|
| 32 |
def clear_memory():
|
| 33 |
-
"""메모리 정리 함수"""
|
| 34 |
gc.collect()
|
| 35 |
try:
|
| 36 |
if torch.cuda.is_available():
|
| 37 |
-
with torch.cuda.device(0):
|
| 38 |
torch.cuda.empty_cache()
|
| 39 |
except:
|
| 40 |
pass
|
| 41 |
|
| 42 |
# GPU 설정
|
| 43 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 44 |
|
| 45 |
-
# GPU 설정을 try-except로 감싸기
|
| 46 |
if torch.cuda.is_available():
|
| 47 |
try:
|
| 48 |
with torch.cuda.device(0):
|
|
@@ -52,29 +36,6 @@ if torch.cuda.is_available():
|
|
| 52 |
except:
|
| 53 |
print("Warning: Could not configure CUDA settings")
|
| 54 |
|
| 55 |
-
# 번역 모델 초기화
|
| 56 |
-
model_name = "Helsinki-NLP/opus-mt-ko-en"
|
| 57 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 58 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to('cpu')
|
| 59 |
-
translator = pipeline("translation", model=model, tokenizer=tokenizer, device=-1)
|
| 60 |
-
|
| 61 |
-
def translate_to_english(text: str) -> str:
|
| 62 |
-
"""한글 텍스트를 영어로 번역"""
|
| 63 |
-
try:
|
| 64 |
-
if any(ord('가') <= ord(char) <= ord('힣') for char in text):
|
| 65 |
-
translated = translator(text, max_length=128)[0]['translation_text']
|
| 66 |
-
print(f"Translated '{text}' to '{translated}'")
|
| 67 |
-
return translated
|
| 68 |
-
return text
|
| 69 |
-
except Exception as e:
|
| 70 |
-
print(f"Translation error: {str(e)}")
|
| 71 |
-
return text
|
| 72 |
-
|
| 73 |
-
BoundingBox = tuple[int, int, int, int]
|
| 74 |
-
|
| 75 |
-
pillow_heif.register_heif_opener()
|
| 76 |
-
pillow_heif.register_avif_opener()
|
| 77 |
-
|
| 78 |
# HF 토큰 설정
|
| 79 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 80 |
if HF_TOKEN is None:
|
|
@@ -85,17 +46,6 @@ try:
|
|
| 85 |
except Exception as e:
|
| 86 |
raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
|
| 87 |
|
| 88 |
-
# 모델 초기화
|
| 89 |
-
segmenter = BoxSegmenter(device="cpu")
|
| 90 |
-
segmenter.device = device
|
| 91 |
-
segmenter.model = segmenter.model.to(device=segmenter.device)
|
| 92 |
-
|
| 93 |
-
gd_model_path = "IDEA-Research/grounding-dino-base"
|
| 94 |
-
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
|
| 95 |
-
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
|
| 96 |
-
gd_model = gd_model.to(device=device)
|
| 97 |
-
assert isinstance(gd_model, GroundingDinoForObjectDetection)
|
| 98 |
-
|
| 99 |
# FLUX 파이프라인 초기화
|
| 100 |
pipe = FluxPipeline.from_pretrained(
|
| 101 |
"black-forest-labs/FLUX.1-dev",
|
|
@@ -104,468 +54,84 @@ pipe = FluxPipeline.from_pretrained(
|
|
| 104 |
)
|
| 105 |
pipe.enable_attention_slicing(slice_size="auto")
|
| 106 |
|
| 107 |
-
# LoRA 가중치 로드
|
| 108 |
-
|
| 109 |
-
hf_hub_download(
|
| 110 |
-
"
|
| 111 |
-
"
|
| 112 |
use_auth_token=HF_TOKEN
|
| 113 |
)
|
| 114 |
-
)
|
| 115 |
-
pipe.fuse_lora(lora_scale=0.125)
|
| 116 |
-
|
| 117 |
-
# GPU 설정을 try-except로 감싸기
|
| 118 |
-
try:
|
| 119 |
-
if torch.cuda.is_available():
|
| 120 |
-
pipe = pipe.to("cuda:0") # 명시적으로 cuda:0 지정
|
| 121 |
except Exception as e:
|
| 122 |
-
print(f"
|
| 123 |
-
|
| 124 |
-
client = Client("NabeelShar/BiRefNet_for_text_writing")
|
| 125 |
-
|
| 126 |
-
class timer:
|
| 127 |
-
def __init__(self, method_name="timed process"):
|
| 128 |
-
self.method = method_name
|
| 129 |
-
def __enter__(self):
|
| 130 |
-
self.start = time.time()
|
| 131 |
-
print(f"{self.method} starts")
|
| 132 |
-
def __exit__(self, exc_type, exc_val, exc_tb):
|
| 133 |
-
end = time.time()
|
| 134 |
-
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
| 135 |
-
|
| 136 |
-
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
|
| 137 |
-
if not bboxes:
|
| 138 |
-
return None
|
| 139 |
-
for bbox in bboxes:
|
| 140 |
-
assert len(bbox) == 4
|
| 141 |
-
assert all(isinstance(x, int) for x in bbox)
|
| 142 |
-
return (
|
| 143 |
-
min(bbox[0] for bbox in bboxes),
|
| 144 |
-
min(bbox[1] for bbox in bboxes),
|
| 145 |
-
max(bbox[2] for bbox in bboxes),
|
| 146 |
-
max(bbox[3] for bbox in bboxes),
|
| 147 |
-
)
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)
|
| 152 |
-
|
| 153 |
-
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
|
| 154 |
-
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)
|
| 155 |
-
with no_grad():
|
| 156 |
-
outputs = gd_model(**inputs)
|
| 157 |
-
width, height = img.size
|
| 158 |
-
results: dict[str, Any] = gd_processor.post_process_grounded_object_detection(
|
| 159 |
-
outputs,
|
| 160 |
-
inputs["input_ids"],
|
| 161 |
-
target_sizes=[(height, width)],
|
| 162 |
-
)[0]
|
| 163 |
-
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)
|
| 164 |
-
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
|
| 165 |
-
return bbox_union(bboxes.numpy().tolist())
|
| 166 |
-
|
| 167 |
-
def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image:
|
| 168 |
-
assert img.size == mask_img.size
|
| 169 |
-
img = img.convert("RGB")
|
| 170 |
-
mask_img = mask_img.convert("L")
|
| 171 |
-
if defringe:
|
| 172 |
-
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
|
| 173 |
-
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
|
| 174 |
-
img = Image.fromarray((foreground * 255).astype("uint8"))
|
| 175 |
-
result = Image.new("RGBA", img.size)
|
| 176 |
-
result.paste(img, (0, 0), mask_img)
|
| 177 |
-
return result
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
def adjust_size_to_multiple_of_8(width: int, height: int) -> tuple[int, int]:
|
| 181 |
-
"""이미지 크기를 8의 배수로 조정하는 함수"""
|
| 182 |
-
new_width = ((width + 7) // 8) * 8
|
| 183 |
-
new_height = ((height + 7) // 8) * 8
|
| 184 |
-
return new_width, new_height
|
| 185 |
-
|
| 186 |
-
def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int, int]:
|
| 187 |
-
"""선택된 비율에 따라 이미지 크기 계산"""
|
| 188 |
-
if aspect_ratio == "1:1":
|
| 189 |
-
return base_size, base_size
|
| 190 |
-
elif aspect_ratio == "16:9":
|
| 191 |
-
return base_size * 16 // 9, base_size
|
| 192 |
-
elif aspect_ratio == "9:16":
|
| 193 |
-
return base_size, base_size * 16 // 9
|
| 194 |
-
elif aspect_ratio == "4:3":
|
| 195 |
-
return base_size * 4 // 3, base_size
|
| 196 |
-
return base_size, base_size
|
| 197 |
-
|
| 198 |
-
@spaces.GPU(duration=20) # 40초에서 20초로 감소
|
| 199 |
-
def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
|
| 200 |
-
try:
|
| 201 |
-
width, height = calculate_dimensions(aspect_ratio)
|
| 202 |
-
width, height = adjust_size_to_multiple_of_8(width, height)
|
| 203 |
-
|
| 204 |
-
max_size = 768
|
| 205 |
-
if width > max_size or height > max_size:
|
| 206 |
-
ratio = max_size / max(width, height)
|
| 207 |
-
width = int(width * ratio)
|
| 208 |
-
height = int(height * ratio)
|
| 209 |
-
width, height = adjust_size_to_multiple_of_8(width, height)
|
| 210 |
-
|
| 211 |
-
with timer("Background generation"):
|
| 212 |
-
try:
|
| 213 |
-
with torch.inference_mode():
|
| 214 |
-
image = pipe(
|
| 215 |
-
prompt=prompt,
|
| 216 |
-
width=width,
|
| 217 |
-
height=height,
|
| 218 |
-
num_inference_steps=8,
|
| 219 |
-
guidance_scale=4.0
|
| 220 |
-
).images[0]
|
| 221 |
-
except Exception as e:
|
| 222 |
-
print(f"Pipeline error: {str(e)}")
|
| 223 |
-
return Image.new('RGB', (width, height), 'white')
|
| 224 |
-
|
| 225 |
-
return image
|
| 226 |
-
except Exception as e:
|
| 227 |
-
print(f"Background generation error: {str(e)}")
|
| 228 |
-
return Image.new('RGB', (512, 512), 'white')
|
| 229 |
-
|
| 230 |
-
def create_position_grid():
|
| 231 |
-
return """
|
| 232 |
-
<div class="position-grid" style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; width: 150px; margin: auto;">
|
| 233 |
-
<button class="position-btn" data-pos="top-left">↖</button>
|
| 234 |
-
<button class="position-btn" data-pos="top-center">↑</button>
|
| 235 |
-
<button class="position-btn" data-pos="top-right">↗</button>
|
| 236 |
-
<button class="position-btn" data-pos="middle-left">←</button>
|
| 237 |
-
<button class="position-btn" data-pos="middle-center">•</button>
|
| 238 |
-
<button class="position-btn" data-pos="middle-right">→</button>
|
| 239 |
-
<button class="position-btn" data-pos="bottom-left">↙</button>
|
| 240 |
-
<button class="position-btn" data-pos="bottom-center" data-default="true">↓</button>
|
| 241 |
-
<button class="position-btn" data-pos="bottom-right">↘</button>
|
| 242 |
-
</div>
|
| 243 |
-
"""
|
| 244 |
-
|
| 245 |
-
def calculate_object_position(position: str, bg_size: tuple[int, int], obj_size: tuple[int, int]) -> tuple[int, int]:
|
| 246 |
-
"""오브젝트의 위치 계산"""
|
| 247 |
-
bg_width, bg_height = bg_size
|
| 248 |
-
obj_width, obj_height = obj_size
|
| 249 |
-
|
| 250 |
-
positions = {
|
| 251 |
-
"top-left": (0, 0),
|
| 252 |
-
"top-center": ((bg_width - obj_width) // 2, 0),
|
| 253 |
-
"top-right": (bg_width - obj_width, 0),
|
| 254 |
-
"middle-left": (0, (bg_height - obj_height) // 2),
|
| 255 |
-
"middle-center": ((bg_width - obj_width) // 2, (bg_height - obj_height) // 2),
|
| 256 |
-
"middle-right": (bg_width - obj_width, (bg_height - obj_height) // 2),
|
| 257 |
-
"bottom-left": (0, bg_height - obj_height),
|
| 258 |
-
"bottom-center": ((bg_width - obj_width) // 2, bg_height - obj_height),
|
| 259 |
-
"bottom-right": (bg_width - obj_width, bg_height - obj_height)
|
| 260 |
-
}
|
| 261 |
-
|
| 262 |
-
return positions.get(position, positions["bottom-center"])
|
| 263 |
-
|
| 264 |
-
def resize_object(image: Image.Image, scale_percent: float) -> Image.Image:
|
| 265 |
-
"""오브젝트 크기 조정"""
|
| 266 |
-
width = int(image.width * scale_percent / 100)
|
| 267 |
-
height = int(image.height * scale_percent / 100)
|
| 268 |
-
return image.resize((width, height), Image.Resampling.LANCZOS)
|
| 269 |
-
|
| 270 |
-
def combine_with_background(foreground: Image.Image, background: Image.Image,
|
| 271 |
-
position: str = "bottom-center", scale_percent: float = 100) -> Image.Image:
|
| 272 |
-
"""전경과 배경 합성 함수"""
|
| 273 |
-
print(f"Combining with position: {position}, scale: {scale_percent}")
|
| 274 |
-
|
| 275 |
-
result = background.convert('RGBA')
|
| 276 |
-
scaled_foreground = resize_object(foreground, scale_percent)
|
| 277 |
-
|
| 278 |
-
x, y = calculate_object_position(position, result.size, scaled_foreground.size)
|
| 279 |
-
print(f"Calculated position coordinates: ({x}, {y})")
|
| 280 |
-
|
| 281 |
-
result.paste(scaled_foreground, (x, y), scaled_foreground)
|
| 282 |
-
return result
|
| 283 |
-
|
| 284 |
-
@spaces.GPU(duration=30) # 120초에서 30초로 감소
|
| 285 |
-
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
|
| 286 |
-
time_log: list[str] = []
|
| 287 |
try:
|
| 288 |
-
|
| 289 |
-
t0 = time.time()
|
| 290 |
-
bbox = gd_detect(img, prompt)
|
| 291 |
-
time_log.append(f"detect: {time.time() - t0}")
|
| 292 |
-
if not bbox:
|
| 293 |
-
print(time_log[0])
|
| 294 |
-
raise gr.Error("No object detected")
|
| 295 |
-
else:
|
| 296 |
-
bbox = prompt
|
| 297 |
-
t0 = time.time()
|
| 298 |
-
mask = segmenter(img, bbox)
|
| 299 |
-
time_log.append(f"segment: {time.time() - t0}")
|
| 300 |
-
return mask, bbox, time_log
|
| 301 |
except Exception as e:
|
| 302 |
-
print(f"
|
| 303 |
-
raise
|
| 304 |
-
|
| 305 |
-
def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
|
| 306 |
-
try:
|
| 307 |
-
# 입력 이미지 크기 제한
|
| 308 |
-
max_size = 1024
|
| 309 |
-
if img.width > max_size or img.height > max_size:
|
| 310 |
-
ratio = max_size / max(img.width, img.height)
|
| 311 |
-
new_size = (int(img.width * ratio), int(img.height * ratio))
|
| 312 |
-
img = img.resize(new_size, Image.LANCZOS)
|
| 313 |
-
|
| 314 |
-
# CUDA 메모리 관리 수정
|
| 315 |
-
try:
|
| 316 |
-
if torch.cuda.is_available():
|
| 317 |
-
current_device = torch.cuda.current_device()
|
| 318 |
-
with torch.cuda.device(current_device):
|
| 319 |
-
torch.cuda.empty_cache()
|
| 320 |
-
except Exception as e:
|
| 321 |
-
print(f"CUDA memory management failed: {e}")
|
| 322 |
-
|
| 323 |
-
with torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
|
| 324 |
-
mask, bbox, time_log = _gpu_process(img, prompt)
|
| 325 |
-
masked_alpha = apply_mask(img, mask, defringe=True)
|
| 326 |
-
|
| 327 |
-
if bg_prompt:
|
| 328 |
-
background = generate_background(bg_prompt, aspect_ratio)
|
| 329 |
-
combined = background
|
| 330 |
-
else:
|
| 331 |
-
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
|
| 332 |
-
|
| 333 |
-
clear_memory()
|
| 334 |
-
|
| 335 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp:
|
| 336 |
-
combined.save(temp.name)
|
| 337 |
-
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
|
| 338 |
-
except Exception as e:
|
| 339 |
-
clear_memory()
|
| 340 |
-
print(f"Processing error: {str(e)}")
|
| 341 |
-
raise gr.Error(f"Processing failed: {str(e)}")
|
| 342 |
|
| 343 |
-
|
| 344 |
-
|
|
|
|
|
|
|
| 345 |
|
|
|
|
|
|
|
| 346 |
|
| 347 |
-
def
|
| 348 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 349 |
|
| 350 |
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
try:
|
| 355 |
-
if
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
print(f"Processing with position: {position}, scale: {scale_percent}") # 디버깅용
|
| 359 |
|
| 360 |
-
|
| 361 |
-
prompt = translate_to_english(prompt)
|
| 362 |
-
if bg_prompt:
|
| 363 |
-
bg_prompt = translate_to_english(bg_prompt)
|
| 364 |
-
except Exception as e:
|
| 365 |
-
print(f"Translation error (continuing with original text): {str(e)}")
|
| 366 |
|
| 367 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
print(f"Using position: {position}") # 디버깅용
|
| 372 |
-
# 위치 값 검증
|
| 373 |
-
valid_positions = ["top-left", "top-center", "top-right",
|
| 374 |
-
"middle-left", "middle-center", "middle-right",
|
| 375 |
-
"bottom-left", "bottom-center", "bottom-right"]
|
| 376 |
-
if position not in valid_positions:
|
| 377 |
-
position = "bottom-center"
|
| 378 |
-
print(f"Invalid position, using default: {position}")
|
| 379 |
-
|
| 380 |
-
combined = combine_with_background(
|
| 381 |
-
foreground=results[2],
|
| 382 |
-
background=results[1],
|
| 383 |
-
position=position,
|
| 384 |
-
scale_percent=scale_percent
|
| 385 |
-
)
|
| 386 |
-
return combined, results[2]
|
| 387 |
-
except Exception as e:
|
| 388 |
-
print(f"Combination error: {str(e)}")
|
| 389 |
-
return results[1], results[2]
|
| 390 |
|
| 391 |
-
return results[1], results[2] # 기본 반환 추가
|
| 392 |
except Exception as e:
|
| 393 |
-
|
| 394 |
-
raise gr.Error(str(e))
|
| 395 |
finally:
|
| 396 |
clear_memory()
|
| 397 |
|
| 398 |
-
|
| 399 |
-
def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]:
|
| 400 |
-
try:
|
| 401 |
-
if img is None or box_input.strip() == "":
|
| 402 |
-
raise gr.Error("Please provide both image and bounding box coordinates")
|
| 403 |
-
|
| 404 |
-
try:
|
| 405 |
-
coords = eval(box_input)
|
| 406 |
-
if not isinstance(coords, list) or len(coords) != 4:
|
| 407 |
-
raise ValueError("Invalid box format")
|
| 408 |
-
bbox = tuple(int(x) for x in coords)
|
| 409 |
-
except:
|
| 410 |
-
raise gr.Error("Invalid box format. Please provide [xmin, ymin, xmax, ymax]")
|
| 411 |
-
|
| 412 |
-
# Process the image
|
| 413 |
-
results, _ = _process(img, bbox)
|
| 414 |
-
|
| 415 |
-
# 합성된 이미지와 추출된 이미지만 반환
|
| 416 |
-
return results[1], results[2]
|
| 417 |
-
except Exception as e:
|
| 418 |
-
raise gr.Error(str(e))
|
| 419 |
-
|
| 420 |
-
# Event handler functions 수정
|
| 421 |
-
def update_process_button(img, prompt):
|
| 422 |
-
return gr.update(
|
| 423 |
-
interactive=bool(img and prompt),
|
| 424 |
-
variant="primary" if bool(img and prompt) else "secondary"
|
| 425 |
-
)
|
| 426 |
-
|
| 427 |
-
def update_box_button(img, box_input):
|
| 428 |
-
try:
|
| 429 |
-
if img and box_input:
|
| 430 |
-
coords = eval(box_input)
|
| 431 |
-
if isinstance(coords, list) and len(coords) == 4:
|
| 432 |
-
return gr.update(interactive=True, variant="primary")
|
| 433 |
-
return gr.update(interactive=False, variant="secondary")
|
| 434 |
-
except:
|
| 435 |
-
return gr.update(interactive=False, variant="secondary")
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
css = """
|
| 439 |
-
footer {display: none}
|
| 440 |
-
.main-title {
|
| 441 |
-
text-align: center;
|
| 442 |
-
margin: 1em 0;
|
| 443 |
-
padding: 1.5em;
|
| 444 |
-
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
| 445 |
-
border-radius: 15px;
|
| 446 |
-
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
| 447 |
-
}
|
| 448 |
-
.main-title h1 {
|
| 449 |
-
color: #2196F3;
|
| 450 |
-
font-size: 2.8em;
|
| 451 |
-
margin-bottom: 0.3em;
|
| 452 |
-
font-weight: 700;
|
| 453 |
-
}
|
| 454 |
-
.main-title p {
|
| 455 |
-
color: #555;
|
| 456 |
-
font-size: 1.3em;
|
| 457 |
-
line-height: 1.4;
|
| 458 |
-
}
|
| 459 |
-
.container {
|
| 460 |
-
max-width: 1200px;
|
| 461 |
-
margin: auto;
|
| 462 |
-
padding: 20px;
|
| 463 |
-
}
|
| 464 |
-
.input-panel, .output-panel {
|
| 465 |
-
background: white;
|
| 466 |
-
padding: 1.5em;
|
| 467 |
-
border-radius: 12px;
|
| 468 |
-
box-shadow: 0 2px 8px rgba(0,0,0,0.08);
|
| 469 |
-
margin-bottom: 1em;
|
| 470 |
-
}
|
| 471 |
-
.controls-panel {
|
| 472 |
-
background: #f8f9fa;
|
| 473 |
-
padding: 1em;
|
| 474 |
-
border-radius: 8px;
|
| 475 |
-
margin: 1em 0;
|
| 476 |
-
}
|
| 477 |
-
.image-display {
|
| 478 |
-
min-height: 512px;
|
| 479 |
-
display: flex;
|
| 480 |
-
align-items: center;
|
| 481 |
-
justify-content: center;
|
| 482 |
-
background: #fafafa;
|
| 483 |
-
border-radius: 8px;
|
| 484 |
-
margin: 1em 0;
|
| 485 |
-
}
|
| 486 |
-
.example-section {
|
| 487 |
-
text-align: center;
|
| 488 |
-
padding: 2em;
|
| 489 |
-
background: #f5f5f5;
|
| 490 |
-
border-radius: 12px;
|
| 491 |
-
margin-top: 2em;
|
| 492 |
-
}
|
| 493 |
-
.example-section img {
|
| 494 |
-
max-width: 100%;
|
| 495 |
-
border-radius: 8px;
|
| 496 |
-
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
|
| 497 |
-
}
|
| 498 |
-
.accordion {
|
| 499 |
-
border: 1px solid #e0e0e0;
|
| 500 |
-
border-radius: 8px;
|
| 501 |
-
margin: 1em 0;
|
| 502 |
-
}
|
| 503 |
-
.accordion-header {
|
| 504 |
-
padding: 1em;
|
| 505 |
-
background: #f5f5f5;
|
| 506 |
-
cursor: pointer;
|
| 507 |
-
}
|
| 508 |
-
.accordion-content {
|
| 509 |
-
padding: 1em;
|
| 510 |
-
display: none;
|
| 511 |
-
}
|
| 512 |
-
.accordion.open .accordion-content {
|
| 513 |
-
display: block;
|
| 514 |
-
}
|
| 515 |
-
.position-grid {
|
| 516 |
-
display: grid;
|
| 517 |
-
grid-template-columns: repeat(3, 1fr);
|
| 518 |
-
gap: 8px;
|
| 519 |
-
margin: 1em 0;
|
| 520 |
-
}
|
| 521 |
-
.position-btn {
|
| 522 |
-
padding: 10px;
|
| 523 |
-
border: 1px solid #ddd;
|
| 524 |
-
border-radius: 4px;
|
| 525 |
-
background: white;
|
| 526 |
-
cursor: pointer;
|
| 527 |
-
transition: all 0.3s ease;
|
| 528 |
-
width: 40px;
|
| 529 |
-
height: 40px;
|
| 530 |
-
display: flex;
|
| 531 |
-
align-items: center;
|
| 532 |
-
justify-content: center;
|
| 533 |
-
}
|
| 534 |
-
.position-btn:hover {
|
| 535 |
-
background: #e3f2fd;
|
| 536 |
-
}
|
| 537 |
-
.position-btn.selected {
|
| 538 |
-
background-color: #2196F3;
|
| 539 |
-
color: white;
|
| 540 |
-
border-color: #1976D2;
|
| 541 |
-
}
|
| 542 |
-
"""
|
| 543 |
-
|
| 544 |
-
|
| 545 |
def add_text_with_stroke(draw, text, x, y, font, text_color, stroke_width):
|
| 546 |
-
"""
|
| 547 |
-
# Draw the stroke/outline
|
| 548 |
for adj_x in range(-stroke_width, stroke_width + 1):
|
| 549 |
for adj_y in range(-stroke_width, stroke_width + 1):
|
| 550 |
draw.text((x + adj_x, y + adj_y), text, font=font, fill=text_color)
|
| 551 |
|
| 552 |
-
def remove_background(image):
|
| 553 |
-
# Save the image to a specific location
|
| 554 |
-
filename = f"image_{uuid.uuid4()}.png" # Generates a universally unique identifier (UUID) for the filename
|
| 555 |
-
image.save(filename)
|
| 556 |
-
# Call gradio client for background removal
|
| 557 |
-
result = client.predict(images=handle_file(filename), api_name="/image")
|
| 558 |
-
return Image.open(result[0])
|
| 559 |
-
|
| 560 |
-
def superimpose(image_with_text, overlay_image):
|
| 561 |
-
# Open image as RGBA to handle transparency
|
| 562 |
-
overlay_image = overlay_image.convert("RGBA")
|
| 563 |
-
# Paste overlay on the background
|
| 564 |
-
image_with_text.paste(overlay_image, (0, 0), overlay_image)
|
| 565 |
-
# Save the final image
|
| 566 |
-
# image_with_text.save("output_image.png")
|
| 567 |
-
return image_with_text
|
| 568 |
-
|
| 569 |
def add_text_to_image(
|
| 570 |
input_image,
|
| 571 |
text,
|
|
@@ -582,7 +148,6 @@ def add_text_to_image(
|
|
| 582 |
if input_image is None or text.strip() == "":
|
| 583 |
return input_image
|
| 584 |
|
| 585 |
-
# PIL Image 객체로 변환
|
| 586 |
if not isinstance(input_image, Image.Image):
|
| 587 |
if isinstance(input_image, np.ndarray):
|
| 588 |
image = Image.fromarray(input_image)
|
|
@@ -591,11 +156,9 @@ def add_text_to_image(
|
|
| 591 |
else:
|
| 592 |
image = input_image.copy()
|
| 593 |
|
| 594 |
-
# 이미지를 RGBA 모드로 변환
|
| 595 |
if image.mode != 'RGBA':
|
| 596 |
image = image.convert('RGBA')
|
| 597 |
|
| 598 |
-
# 폰트 설정
|
| 599 |
font_files = {
|
| 600 |
"Default": "DejaVuSans.ttf",
|
| 601 |
"Korean Regular": "ko-Regular.ttf"
|
|
@@ -608,7 +171,6 @@ def add_text_to_image(
|
|
| 608 |
print(f"Font loading error ({font_choice}): {str(e)}")
|
| 609 |
font = ImageFont.load_default()
|
| 610 |
|
| 611 |
-
# 색상 설정
|
| 612 |
color_map = {
|
| 613 |
'White': (255, 255, 255),
|
| 614 |
'Black': (0, 0, 0),
|
|
@@ -620,419 +182,187 @@ def add_text_to_image(
|
|
| 620 |
}
|
| 621 |
rgb_color = color_map.get(color, (255, 255, 255))
|
| 622 |
|
| 623 |
-
# 임시 Draw 객체 생성하여 텍스트 크기 계산
|
| 624 |
temp_draw = ImageDraw.Draw(image)
|
| 625 |
text_bbox = temp_draw.textbbox((0, 0), text, font=font)
|
| 626 |
text_width = text_bbox[2] - text_bbox[0]
|
| 627 |
text_height = text_bbox[3] - text_bbox[1]
|
| 628 |
|
| 629 |
-
# 위치 계산
|
| 630 |
actual_x = int((image.width - text_width) * (x_position / 100))
|
| 631 |
actual_y = int((image.height - text_height) * (y_position / 100))
|
| 632 |
|
| 633 |
-
# 텍스트 색상 설정
|
| 634 |
text_color = (*rgb_color, int(opacity))
|
| 635 |
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
add_text_with_stroke(
|
| 650 |
-
draw_text,
|
| 651 |
-
text,
|
| 652 |
-
actual_x,
|
| 653 |
-
actual_y,
|
| 654 |
-
font,
|
| 655 |
-
text_color,
|
| 656 |
-
int(thickness)
|
| 657 |
-
)
|
| 658 |
-
|
| 659 |
-
# 배경에 텍스트 합성
|
| 660 |
-
background = Image.alpha_composite(background, text_layer)
|
| 661 |
-
|
| 662 |
-
# 텍스트가 있는 배경 위에 전경 객체 합성
|
| 663 |
-
output_image = Image.alpha_composite(background, foreground)
|
| 664 |
-
except Exception as e:
|
| 665 |
-
print(f"Error in Text Behind Image processing: {str(e)}")
|
| 666 |
-
return input_image
|
| 667 |
-
else:
|
| 668 |
-
# 텍스트 오버레이 생성
|
| 669 |
-
txt_overlay = Image.new('RGBA', image.size, (255, 255, 255, 0))
|
| 670 |
-
draw = ImageDraw.Draw(txt_overlay)
|
| 671 |
-
|
| 672 |
-
# 텍스트를 이미지 위에 그리기
|
| 673 |
-
add_text_with_stroke(
|
| 674 |
-
draw,
|
| 675 |
-
text,
|
| 676 |
-
actual_x,
|
| 677 |
-
actual_y,
|
| 678 |
-
font,
|
| 679 |
-
text_color,
|
| 680 |
-
int(thickness)
|
| 681 |
-
)
|
| 682 |
-
output_image = Image.alpha_composite(image, txt_overlay)
|
| 683 |
|
| 684 |
-
# RGB로 변환
|
| 685 |
output_image = output_image.convert('RGB')
|
| 686 |
|
| 687 |
return output_image
|
| 688 |
|
| 689 |
except Exception as e:
|
| 690 |
print(f"Error in add_text_to_image: {str(e)}")
|
| 691 |
-
return input_image
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
def update_position(new_position):
|
| 695 |
-
"""위치 업데이트 함수"""
|
| 696 |
-
print(f"Position updated to: {new_position}")
|
| 697 |
-
return new_position
|
| 698 |
-
|
| 699 |
-
def update_controls(bg_prompt):
|
| 700 |
-
"""배경 프롬프트 입력 여부에 따라 컨트롤 표시 업데이트"""
|
| 701 |
-
is_visible = bool(bg_prompt)
|
| 702 |
-
return [
|
| 703 |
-
gr.update(visible=is_visible), # aspect_ratio
|
| 704 |
-
gr.update(visible=is_visible), # object_controls
|
| 705 |
-
]
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
# 저장 디렉토리 설정
|
| 709 |
-
SAVE_DIR = "saved_images"
|
| 710 |
-
if not os.path.exists(SAVE_DIR):
|
| 711 |
-
os.makedirs(SAVE_DIR, exist_ok=True)
|
| 712 |
-
|
| 713 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 714 |
-
MAX_IMAGE_SIZE = 1024
|
| 715 |
|
| 716 |
-
def save_generated_image(image, prompt):
|
| 717 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 718 |
-
unique_id = str(uuid.uuid4())[:8]
|
| 719 |
-
filename = f"{timestamp}_{unique_id}.png"
|
| 720 |
-
filepath = os.path.join(SAVE_DIR, filename)
|
| 721 |
-
|
| 722 |
-
image.save(filepath)
|
| 723 |
-
return filepath
|
| 724 |
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
|
| 743 |
-
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
|
| 748 |
-
|
| 749 |
-
|
| 750 |
-
|
| 751 |
-
|
| 752 |
-
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
|
| 756 |
-
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
height: int,
|
| 760 |
-
guidance_scale: float,
|
| 761 |
-
num_inference_steps: int,
|
| 762 |
-
progress: gr.Progress = gr.Progress()
|
| 763 |
-
):
|
| 764 |
-
try:
|
| 765 |
-
if randomize_seed:
|
| 766 |
-
seed = random.randint(0, MAX_SEED)
|
| 767 |
-
|
| 768 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
| 769 |
-
|
| 770 |
-
with torch.inference_mode():
|
| 771 |
-
# gen_pipe 사용
|
| 772 |
-
image = gen_pipe(
|
| 773 |
-
prompt=prompt,
|
| 774 |
-
width=width,
|
| 775 |
-
height=height,
|
| 776 |
-
num_inference_steps=num_inference_steps,
|
| 777 |
-
guidance_scale=guidance_scale,
|
| 778 |
-
generator=generator,
|
| 779 |
-
).images[0]
|
| 780 |
-
|
| 781 |
-
filepath = save_generated_image(image, prompt)
|
| 782 |
-
return image, seed
|
| 783 |
-
|
| 784 |
-
except Exception as e:
|
| 785 |
-
raise gr.Error(f"Image generation failed: {str(e)}")
|
| 786 |
-
finally:
|
| 787 |
-
clear_memory()
|
| 788 |
|
| 789 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
| 790 |
-
position = gr.State(value="bottom-center")
|
| 791 |
-
|
| 792 |
gr.HTML("""
|
| 793 |
<div class="main-title">
|
| 794 |
<h1>🎨 Webtoon Canvas</h1>
|
| 795 |
-
<p>
|
| 796 |
</div>
|
| 797 |
""")
|
| 798 |
|
| 799 |
-
with gr.
|
| 800 |
-
with gr.
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
|
| 804 |
-
|
| 805 |
-
|
| 806 |
-
|
| 807 |
-
|
| 808 |
-
|
| 809 |
-
|
| 810 |
-
|
| 811 |
-
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
|
| 815 |
-
|
| 816 |
-
|
| 817 |
-
|
| 818 |
-
|
| 819 |
-
|
| 820 |
-
|
| 821 |
-
|
| 822 |
-
|
| 823 |
-
|
| 824 |
-
|
| 825 |
-
|
| 826 |
-
label="Aspect Ratio",
|
| 827 |
-
interactive=True,
|
| 828 |
-
visible=True,
|
| 829 |
-
scale=1
|
| 830 |
-
)
|
| 831 |
-
|
| 832 |
-
with gr.Group(elem_classes="controls-panel", visible=False) as object_controls:
|
| 833 |
-
with gr.Column(scale=1):
|
| 834 |
-
position = gr.State(value="bottom-center")
|
| 835 |
-
with gr.Row():
|
| 836 |
-
btn_top_left = gr.Button("↖", elem_classes="position-btn")
|
| 837 |
-
btn_top_center = gr.Button("↑", elem_classes="position-btn")
|
| 838 |
-
btn_top_right = gr.Button("↗", elem_classes="position-btn")
|
| 839 |
-
with gr.Row():
|
| 840 |
-
btn_middle_left = gr.Button("←", elem_classes="position-btn")
|
| 841 |
-
btn_middle_center = gr.Button("•", elem_classes="position-btn")
|
| 842 |
-
btn_middle_right = gr.Button("→", elem_classes="position-btn")
|
| 843 |
-
with gr.Row():
|
| 844 |
-
btn_bottom_left = gr.Button("↙", elem_classes="position-btn")
|
| 845 |
-
btn_bottom_center = gr.Button("↓", elem_classes="position-btn", value="selected")
|
| 846 |
-
btn_bottom_right = gr.Button("↘", elem_classes="position-btn")
|
| 847 |
-
with gr.Column(scale=1):
|
| 848 |
-
scale_slider = gr.Slider(
|
| 849 |
-
minimum=10,
|
| 850 |
-
maximum=200,
|
| 851 |
-
value=50,
|
| 852 |
-
step=5,
|
| 853 |
-
label="Object Size (%)"
|
| 854 |
-
)
|
| 855 |
-
|
| 856 |
-
process_btn = gr.Button(
|
| 857 |
-
"Process",
|
| 858 |
-
variant="primary",
|
| 859 |
-
interactive=False,
|
| 860 |
-
size="lg"
|
| 861 |
-
)
|
| 862 |
-
|
| 863 |
-
# 오른쪽 패널 (출력)
|
| 864 |
-
with gr.Column(scale=1):
|
| 865 |
-
with gr.Group(elem_classes="output-panel"):
|
| 866 |
-
combined_image = gr.Image(
|
| 867 |
-
label="Combined Result",
|
| 868 |
-
show_download_button=True,
|
| 869 |
-
type="pil",
|
| 870 |
-
height=400
|
| 871 |
-
)
|
| 872 |
-
|
| 873 |
-
with gr.Accordion("Text Insertion Options", open=False):
|
| 874 |
-
with gr.Group():
|
| 875 |
-
with gr.Row():
|
| 876 |
-
text_input = gr.Textbox(
|
| 877 |
-
label="Text Content",
|
| 878 |
-
placeholder="Enter text to add..."
|
| 879 |
-
)
|
| 880 |
-
text_position_type = gr.Radio(
|
| 881 |
-
choices=["Text Over Image", "Text Behind Image"],
|
| 882 |
-
value="Text Over Image",
|
| 883 |
-
label="Text Position"
|
| 884 |
-
)
|
| 885 |
-
|
| 886 |
-
with gr.Row():
|
| 887 |
-
with gr.Column(scale=1):
|
| 888 |
-
font_choice = gr.Dropdown(
|
| 889 |
-
choices=["Default", "Korean Regular"],
|
| 890 |
-
value="Default",
|
| 891 |
-
label="Font Selection",
|
| 892 |
-
interactive=True
|
| 893 |
-
)
|
| 894 |
-
font_size = gr.Slider(
|
| 895 |
-
minimum=10,
|
| 896 |
-
maximum=200,
|
| 897 |
-
value=40,
|
| 898 |
-
step=5,
|
| 899 |
-
label="Font Size"
|
| 900 |
-
)
|
| 901 |
-
color_dropdown = gr.Dropdown(
|
| 902 |
-
choices=["White", "Black", "Red", "Green", "Blue", "Yellow", "Purple"],
|
| 903 |
-
value="White",
|
| 904 |
-
label="Text Color"
|
| 905 |
-
)
|
| 906 |
-
thickness = gr.Slider(
|
| 907 |
-
minimum=0,
|
| 908 |
-
maximum=10,
|
| 909 |
-
value=1,
|
| 910 |
-
step=1,
|
| 911 |
-
label="Text Thickness"
|
| 912 |
-
)
|
| 913 |
-
with gr.Column(scale=1):
|
| 914 |
-
opacity_slider = gr.Slider(
|
| 915 |
-
minimum=0,
|
| 916 |
-
maximum=255,
|
| 917 |
-
value=255,
|
| 918 |
-
step=1,
|
| 919 |
-
label="Opacity"
|
| 920 |
-
)
|
| 921 |
-
x_position = gr.Slider(
|
| 922 |
-
minimum=0,
|
| 923 |
-
maximum=100,
|
| 924 |
-
value=50,
|
| 925 |
-
step=1,
|
| 926 |
-
label="Left(0%)~Right(100%)"
|
| 927 |
-
)
|
| 928 |
-
y_position = gr.Slider(
|
| 929 |
-
minimum=0,
|
| 930 |
-
maximum=100,
|
| 931 |
-
value=50,
|
| 932 |
-
step=1,
|
| 933 |
-
label="High(0%)~Low(100%)"
|
| 934 |
-
)
|
| 935 |
-
add_text_btn = gr.Button("Apply Text", variant="primary")
|
| 936 |
-
|
| 937 |
-
extracted_image = gr.Image(
|
| 938 |
-
label="Extracted Object",
|
| 939 |
-
show_download_button=True,
|
| 940 |
-
type="pil",
|
| 941 |
-
height=200
|
| 942 |
-
)
|
| 943 |
|
| 944 |
-
|
| 945 |
-
with gr.
|
| 946 |
-
|
| 947 |
-
label="
|
| 948 |
-
placeholder="Enter
|
| 949 |
)
|
| 950 |
with gr.Row():
|
| 951 |
-
|
| 952 |
-
|
| 953 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 954 |
with gr.Row():
|
| 955 |
-
|
| 956 |
-
|
| 957 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 958 |
with gr.Row():
|
| 959 |
-
|
| 960 |
-
|
| 961 |
-
|
| 962 |
-
|
| 963 |
-
|
| 964 |
-
|
| 965 |
-
|
| 966 |
-
|
| 967 |
-
|
| 968 |
-
|
| 969 |
-
|
| 970 |
-
|
| 971 |
-
|
| 972 |
-
|
| 973 |
-
|
| 974 |
-
|
| 975 |
-
|
| 976 |
-
|
| 977 |
-
|
| 978 |
-
|
| 979 |
-
|
| 980 |
-
|
| 981 |
-
|
| 982 |
-
btn_middle_left: "middle-left",
|
| 983 |
-
btn_middle_center: "middle-center",
|
| 984 |
-
btn_middle_right: "middle-right",
|
| 985 |
-
btn_bottom_left: "bottom-left",
|
| 986 |
-
btn_bottom_center: "bottom-center",
|
| 987 |
-
btn_bottom_right: "bottom-right"
|
| 988 |
-
}
|
| 989 |
-
|
| 990 |
-
for btn, pos in position_mapping.items():
|
| 991 |
-
btn.click(
|
| 992 |
-
fn=lambda pos=pos: update_position(pos),
|
| 993 |
-
outputs=position
|
| 994 |
-
)
|
| 995 |
|
| 996 |
# 이벤트 바인딩
|
| 997 |
-
|
| 998 |
-
fn=
|
| 999 |
-
inputs=bg_prompt,
|
| 1000 |
-
outputs=[aspect_ratio, object_controls],
|
| 1001 |
-
queue=False
|
| 1002 |
-
)
|
| 1003 |
-
|
| 1004 |
-
input_image.change(
|
| 1005 |
-
fn=update_process_button,
|
| 1006 |
-
inputs=[input_image, text_prompt],
|
| 1007 |
-
outputs=process_btn,
|
| 1008 |
-
queue=False
|
| 1009 |
-
)
|
| 1010 |
-
|
| 1011 |
-
text_prompt.change(
|
| 1012 |
-
fn=update_process_button,
|
| 1013 |
-
inputs=[input_image, text_prompt],
|
| 1014 |
-
outputs=process_btn,
|
| 1015 |
-
queue=False
|
| 1016 |
-
)
|
| 1017 |
-
|
| 1018 |
-
process_btn.click(
|
| 1019 |
-
fn=process_prompt,
|
| 1020 |
inputs=[
|
| 1021 |
-
|
| 1022 |
-
|
| 1023 |
-
|
| 1024 |
-
|
| 1025 |
-
|
| 1026 |
-
|
|
|
|
| 1027 |
],
|
| 1028 |
-
outputs=[
|
| 1029 |
-
queue=True
|
| 1030 |
)
|
| 1031 |
|
| 1032 |
add_text_btn.click(
|
| 1033 |
fn=add_text_to_image,
|
| 1034 |
inputs=[
|
| 1035 |
-
|
| 1036 |
text_input,
|
| 1037 |
font_size,
|
| 1038 |
color_dropdown,
|
|
@@ -1040,25 +370,10 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
| 1040 |
x_position,
|
| 1041 |
y_position,
|
| 1042 |
thickness,
|
| 1043 |
-
text_position_type
|
| 1044 |
font_choice
|
| 1045 |
],
|
| 1046 |
-
outputs=
|
| 1047 |
-
api_name="add_text"
|
| 1048 |
-
)
|
| 1049 |
-
|
| 1050 |
-
generate_btn.click(
|
| 1051 |
-
fn=generate_image,
|
| 1052 |
-
inputs=[
|
| 1053 |
-
gen_prompt,
|
| 1054 |
-
seed,
|
| 1055 |
-
randomize_seed,
|
| 1056 |
-
gen_width,
|
| 1057 |
-
gen_height,
|
| 1058 |
-
guidance_scale,
|
| 1059 |
-
num_steps,
|
| 1060 |
-
],
|
| 1061 |
-
outputs=[output_image, output_seed]
|
| 1062 |
)
|
| 1063 |
|
| 1064 |
demo.queue(max_size=5)
|
|
@@ -1067,4 +382,7 @@ demo.launch(
|
|
| 1067 |
server_port=7860,
|
| 1068 |
share=False,
|
| 1069 |
max_threads=2
|
| 1070 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gc
|
| 3 |
+
import uuid
|
| 4 |
+
import random
|
| 5 |
import tempfile
|
| 6 |
import time
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
from typing import Any
|
|
|
|
| 9 |
from huggingface_hub import login, hf_hub_download
|
| 10 |
|
| 11 |
import gradio as gr
|
| 12 |
import numpy as np
|
|
|
|
|
|
|
| 13 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
from PIL import Image, ImageDraw, ImageFont
|
| 15 |
+
from diffusers import FluxPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# 메모리 정리 함수
|
| 18 |
def clear_memory():
|
|
|
|
| 19 |
gc.collect()
|
| 20 |
try:
|
| 21 |
if torch.cuda.is_available():
|
| 22 |
+
with torch.cuda.device(0):
|
| 23 |
torch.cuda.empty_cache()
|
| 24 |
except:
|
| 25 |
pass
|
| 26 |
|
| 27 |
# GPU 설정
|
| 28 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 29 |
|
|
|
|
| 30 |
if torch.cuda.is_available():
|
| 31 |
try:
|
| 32 |
with torch.cuda.device(0):
|
|
|
|
| 36 |
except:
|
| 37 |
print("Warning: Could not configure CUDA settings")
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
# HF 토큰 설정
|
| 40 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 41 |
if HF_TOKEN is None:
|
|
|
|
| 46 |
except Exception as e:
|
| 47 |
raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
# FLUX 파이프라인 초기화
|
| 50 |
pipe = FluxPipeline.from_pretrained(
|
| 51 |
"black-forest-labs/FLUX.1-dev",
|
|
|
|
| 54 |
)
|
| 55 |
pipe.enable_attention_slicing(slice_size="auto")
|
| 56 |
|
| 57 |
+
# Eric cat LoRA 가중치 로드
|
| 58 |
+
try:
|
| 59 |
+
lora_path = hf_hub_download(
|
| 60 |
+
"ginipick/flux-lora-eric-cat",
|
| 61 |
+
"flux-lora-eric-cat.safetensors",
|
| 62 |
use_auth_token=HF_TOKEN
|
| 63 |
)
|
| 64 |
+
pipe.load_lora_weights(lora_path)
|
| 65 |
+
pipe.fuse_lora(lora_scale=0.125)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
except Exception as e:
|
| 67 |
+
print(f"Error loading LoRA weights: {str(e)}")
|
| 68 |
+
raise ValueError("Failed to load LoRA weights. Please check your HF_TOKEN and model access.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
# GPU로 이동
|
| 71 |
+
if torch.cuda.is_available():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
try:
|
| 73 |
+
pipe = pipe.to("cuda:0")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
except Exception as e:
|
| 75 |
+
print(f"Warning: Could not move pipeline to CUDA: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
# 저장 디렉토리 설정
|
| 78 |
+
SAVE_DIR = "saved_images"
|
| 79 |
+
if not os.path.exists(SAVE_DIR):
|
| 80 |
+
os.makedirs(SAVE_DIR, exist_ok=True)
|
| 81 |
|
| 82 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 83 |
+
MAX_IMAGE_SIZE = 1024
|
| 84 |
|
| 85 |
+
def save_generated_image(image, prompt):
|
| 86 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 87 |
+
unique_id = str(uuid.uuid4())[:8]
|
| 88 |
+
filename = f"{timestamp}_{unique_id}.png"
|
| 89 |
+
filepath = os.path.join(SAVE_DIR, filename)
|
| 90 |
+
image.save(filepath)
|
| 91 |
+
return filepath
|
| 92 |
|
| 93 |
|
| 94 |
+
@gr.GPU(duration=60)
|
| 95 |
+
def generate_image(
|
| 96 |
+
prompt: str,
|
| 97 |
+
seed: int,
|
| 98 |
+
randomize_seed: bool,
|
| 99 |
+
width: int,
|
| 100 |
+
height: int,
|
| 101 |
+
guidance_scale: float,
|
| 102 |
+
num_inference_steps: int,
|
| 103 |
+
progress: gr.Progress = gr.Progress()
|
| 104 |
+
):
|
| 105 |
try:
|
| 106 |
+
if randomize_seed:
|
| 107 |
+
seed = random.randint(0, MAX_SEED)
|
|
|
|
|
|
|
| 108 |
|
| 109 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
with torch.inference_mode():
|
| 112 |
+
image = pipe(
|
| 113 |
+
prompt=prompt,
|
| 114 |
+
width=width,
|
| 115 |
+
height=height,
|
| 116 |
+
num_inference_steps=num_inference_steps,
|
| 117 |
+
guidance_scale=guidance_scale,
|
| 118 |
+
generator=generator,
|
| 119 |
+
).images[0]
|
| 120 |
|
| 121 |
+
filepath = save_generated_image(image, prompt)
|
| 122 |
+
return image, seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
|
|
|
| 124 |
except Exception as e:
|
| 125 |
+
raise gr.Error(f"Image generation failed: {str(e)}")
|
|
|
|
| 126 |
finally:
|
| 127 |
clear_memory()
|
| 128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
def add_text_with_stroke(draw, text, x, y, font, text_color, stroke_width):
|
| 130 |
+
"""텍스트에 외곽선을 추가하는 함수"""
|
|
|
|
| 131 |
for adj_x in range(-stroke_width, stroke_width + 1):
|
| 132 |
for adj_y in range(-stroke_width, stroke_width + 1):
|
| 133 |
draw.text((x + adj_x, y + adj_y), text, font=font, fill=text_color)
|
| 134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
def add_text_to_image(
|
| 136 |
input_image,
|
| 137 |
text,
|
|
|
|
| 148 |
if input_image is None or text.strip() == "":
|
| 149 |
return input_image
|
| 150 |
|
|
|
|
| 151 |
if not isinstance(input_image, Image.Image):
|
| 152 |
if isinstance(input_image, np.ndarray):
|
| 153 |
image = Image.fromarray(input_image)
|
|
|
|
| 156 |
else:
|
| 157 |
image = input_image.copy()
|
| 158 |
|
|
|
|
| 159 |
if image.mode != 'RGBA':
|
| 160 |
image = image.convert('RGBA')
|
| 161 |
|
|
|
|
| 162 |
font_files = {
|
| 163 |
"Default": "DejaVuSans.ttf",
|
| 164 |
"Korean Regular": "ko-Regular.ttf"
|
|
|
|
| 171 |
print(f"Font loading error ({font_choice}): {str(e)}")
|
| 172 |
font = ImageFont.load_default()
|
| 173 |
|
|
|
|
| 174 |
color_map = {
|
| 175 |
'White': (255, 255, 255),
|
| 176 |
'Black': (0, 0, 0),
|
|
|
|
| 182 |
}
|
| 183 |
rgb_color = color_map.get(color, (255, 255, 255))
|
| 184 |
|
|
|
|
| 185 |
temp_draw = ImageDraw.Draw(image)
|
| 186 |
text_bbox = temp_draw.textbbox((0, 0), text, font=font)
|
| 187 |
text_width = text_bbox[2] - text_bbox[0]
|
| 188 |
text_height = text_bbox[3] - text_bbox[1]
|
| 189 |
|
|
|
|
| 190 |
actual_x = int((image.width - text_width) * (x_position / 100))
|
| 191 |
actual_y = int((image.height - text_height) * (y_position / 100))
|
| 192 |
|
|
|
|
| 193 |
text_color = (*rgb_color, int(opacity))
|
| 194 |
|
| 195 |
+
txt_overlay = Image.new('RGBA', image.size, (255, 255, 255, 0))
|
| 196 |
+
draw = ImageDraw.Draw(txt_overlay)
|
| 197 |
+
|
| 198 |
+
add_text_with_stroke(
|
| 199 |
+
draw,
|
| 200 |
+
text,
|
| 201 |
+
actual_x,
|
| 202 |
+
actual_y,
|
| 203 |
+
font,
|
| 204 |
+
text_color,
|
| 205 |
+
int(thickness)
|
| 206 |
+
)
|
| 207 |
+
output_image = Image.alpha_composite(image, txt_overlay)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
|
|
|
| 209 |
output_image = output_image.convert('RGB')
|
| 210 |
|
| 211 |
return output_image
|
| 212 |
|
| 213 |
except Exception as e:
|
| 214 |
print(f"Error in add_text_to_image: {str(e)}")
|
| 215 |
+
return input_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
+
css = """
|
| 219 |
+
footer {display: none}
|
| 220 |
+
.main-title {
|
| 221 |
+
text-align: center;
|
| 222 |
+
margin: 1em 0;
|
| 223 |
+
padding: 1.5em;
|
| 224 |
+
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
| 225 |
+
border-radius: 15px;
|
| 226 |
+
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
| 227 |
+
}
|
| 228 |
+
.main-title h1 {
|
| 229 |
+
color: #2196F3;
|
| 230 |
+
font-size: 2.8em;
|
| 231 |
+
margin-bottom: 0.3em;
|
| 232 |
+
font-weight: 700;
|
| 233 |
+
}
|
| 234 |
+
.main-title p {
|
| 235 |
+
color: #555;
|
| 236 |
+
font-size: 1.3em;
|
| 237 |
+
line-height: 1.4;
|
| 238 |
+
}
|
| 239 |
+
.container {
|
| 240 |
+
max-width: 1200px;
|
| 241 |
+
margin: auto;
|
| 242 |
+
padding: 20px;
|
| 243 |
+
}
|
| 244 |
+
.input-panel, .output-panel {
|
| 245 |
+
background: white;
|
| 246 |
+
padding: 1.5em;
|
| 247 |
+
border-radius: 12px;
|
| 248 |
+
box-shadow: 0 2px 8px rgba(0,0,0,0.08);
|
| 249 |
+
margin-bottom: 1em;
|
| 250 |
+
}
|
| 251 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
|
|
|
|
|
| 254 |
gr.HTML("""
|
| 255 |
<div class="main-title">
|
| 256 |
<h1>🎨 Webtoon Canvas</h1>
|
| 257 |
+
<p>Generate webtoon-style images and add text with various styles and positions.</p>
|
| 258 |
</div>
|
| 259 |
""")
|
| 260 |
|
| 261 |
+
with gr.Row():
|
| 262 |
+
with gr.Column(scale=1):
|
| 263 |
+
# 이미지 생성 섹션
|
| 264 |
+
gen_prompt = gr.Textbox(
|
| 265 |
+
label="Generation Prompt",
|
| 266 |
+
placeholder="Enter your image generation prompt..."
|
| 267 |
+
)
|
| 268 |
+
with gr.Row():
|
| 269 |
+
gen_width = gr.Slider(512, 1024, 768, step=64, label="Width")
|
| 270 |
+
gen_height = gr.Slider(512, 1024, 768, step=64, label="Height")
|
| 271 |
+
|
| 272 |
+
with gr.Row():
|
| 273 |
+
guidance_scale = gr.Slider(1, 20, 7.5, step=0.5, label="Guidance Scale")
|
| 274 |
+
num_steps = gr.Slider(1, 50, 30, step=1, label="Number of Steps")
|
| 275 |
+
|
| 276 |
+
with gr.Row():
|
| 277 |
+
seed = gr.Number(label="Seed", value=-1)
|
| 278 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 279 |
+
|
| 280 |
+
generate_btn = gr.Button("Generate Image", variant="primary")
|
| 281 |
+
|
| 282 |
+
output_image = gr.Image(
|
| 283 |
+
label="Generated Image",
|
| 284 |
+
type="pil",
|
| 285 |
+
show_download_button=True
|
| 286 |
+
)
|
| 287 |
+
output_seed = gr.Number(label="Used Seed", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
+
# 텍스트 추가 섹션
|
| 290 |
+
with gr.Accordion("Text Options", open=False):
|
| 291 |
+
text_input = gr.Textbox(
|
| 292 |
+
label="Text Content",
|
| 293 |
+
placeholder="Enter text to add..."
|
| 294 |
)
|
| 295 |
with gr.Row():
|
| 296 |
+
font_choice = gr.Dropdown(
|
| 297 |
+
choices=["Default", "Korean Regular"],
|
| 298 |
+
value="Default",
|
| 299 |
+
label="Font Selection",
|
| 300 |
+
interactive=True
|
| 301 |
+
)
|
| 302 |
+
font_size = gr.Slider(
|
| 303 |
+
minimum=10,
|
| 304 |
+
maximum=200,
|
| 305 |
+
value=40,
|
| 306 |
+
step=5,
|
| 307 |
+
label="Font Size"
|
| 308 |
+
)
|
| 309 |
with gr.Row():
|
| 310 |
+
color_dropdown = gr.Dropdown(
|
| 311 |
+
choices=["White", "Black", "Red", "Green", "Blue", "Yellow", "Purple"],
|
| 312 |
+
value="White",
|
| 313 |
+
label="Text Color"
|
| 314 |
+
)
|
| 315 |
+
thickness = gr.Slider(
|
| 316 |
+
minimum=0,
|
| 317 |
+
maximum=10,
|
| 318 |
+
value=1,
|
| 319 |
+
step=1,
|
| 320 |
+
label="Text Thickness"
|
| 321 |
+
)
|
| 322 |
with gr.Row():
|
| 323 |
+
opacity_slider = gr.Slider(
|
| 324 |
+
minimum=0,
|
| 325 |
+
maximum=255,
|
| 326 |
+
value=255,
|
| 327 |
+
step=1,
|
| 328 |
+
label="Opacity"
|
| 329 |
+
)
|
| 330 |
+
with gr.Row():
|
| 331 |
+
x_position = gr.Slider(
|
| 332 |
+
minimum=0,
|
| 333 |
+
maximum=100,
|
| 334 |
+
value=50,
|
| 335 |
+
step=1,
|
| 336 |
+
label="Left(0%)~Right(100%)"
|
| 337 |
+
)
|
| 338 |
+
y_position = gr.Slider(
|
| 339 |
+
minimum=0,
|
| 340 |
+
maximum=100,
|
| 341 |
+
value=50,
|
| 342 |
+
step=1,
|
| 343 |
+
label="High(0%)~Low(100%)"
|
| 344 |
+
)
|
| 345 |
+
add_text_btn = gr.Button("Apply Text", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
|
| 347 |
# 이벤트 바인딩
|
| 348 |
+
generate_btn.click(
|
| 349 |
+
fn=generate_image,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
inputs=[
|
| 351 |
+
gen_prompt,
|
| 352 |
+
seed,
|
| 353 |
+
randomize_seed,
|
| 354 |
+
gen_width,
|
| 355 |
+
gen_height,
|
| 356 |
+
guidance_scale,
|
| 357 |
+
num_steps,
|
| 358 |
],
|
| 359 |
+
outputs=[output_image, output_seed]
|
|
|
|
| 360 |
)
|
| 361 |
|
| 362 |
add_text_btn.click(
|
| 363 |
fn=add_text_to_image,
|
| 364 |
inputs=[
|
| 365 |
+
output_image,
|
| 366 |
text_input,
|
| 367 |
font_size,
|
| 368 |
color_dropdown,
|
|
|
|
| 370 |
x_position,
|
| 371 |
y_position,
|
| 372 |
thickness,
|
| 373 |
+
"Text Over Image", # text_position_type 고정
|
| 374 |
font_choice
|
| 375 |
],
|
| 376 |
+
outputs=output_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
)
|
| 378 |
|
| 379 |
demo.queue(max_size=5)
|
|
|
|
| 382 |
server_port=7860,
|
| 383 |
share=False,
|
| 384 |
max_threads=2
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
|