Spaces:
Paused
Paused
| import math | |
| from abc import ABC, abstractmethod | |
| from dataclasses import dataclass | |
| from typing import Callable, Optional, Tuple, Union | |
| import torch | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.schedulers.scheduling_utils import SchedulerMixin | |
| from diffusers.utils import BaseOutput | |
| from torch import Tensor | |
| from xora.utils.torch_utils import append_dims | |
| def simple_diffusion_resolution_dependent_timestep_shift( | |
| samples: Tensor, | |
| timesteps: Tensor, | |
| n: int = 32 * 32, | |
| ) -> Tensor: | |
| if len(samples.shape) == 3: | |
| _, m, _ = samples.shape | |
| elif len(samples.shape) in [4, 5]: | |
| m = math.prod(samples.shape[2:]) | |
| else: | |
| raise ValueError( | |
| "Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)" | |
| ) | |
| snr = (timesteps / (1 - timesteps)) ** 2 | |
| shift_snr = torch.log(snr) + 2 * math.log(m / n) | |
| shifted_timesteps = torch.sigmoid(0.5 * shift_snr) | |
| return shifted_timesteps | |
| def time_shift(mu: float, sigma: float, t: Tensor): | |
| return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) | |
| def get_normal_shift( | |
| n_tokens: int, | |
| min_tokens: int = 1024, | |
| max_tokens: int = 4096, | |
| min_shift: float = 0.95, | |
| max_shift: float = 2.05, | |
| ) -> Callable[[float], float]: | |
| m = (max_shift - min_shift) / (max_tokens - min_tokens) | |
| b = min_shift - m * min_tokens | |
| return m * n_tokens + b | |
| def sd3_resolution_dependent_timestep_shift( | |
| samples: Tensor, timesteps: Tensor | |
| ) -> Tensor: | |
| """ | |
| Shifts the timestep schedule as a function of the generated resolution. | |
| In the SD3 paper, the authors empirically how to shift the timesteps based on the resolution of the target images. | |
| For more details: https://arxiv.org/pdf/2403.03206 | |
| In Flux they later propose a more dynamic resolution dependent timestep shift, see: | |
| https://github.com/black-forest-labs/flux/blob/87f6fff727a377ea1c378af692afb41ae84cbe04/src/flux/sampling.py#L66 | |
| Args: | |
| samples (Tensor): A batch of samples with shape (batch_size, channels, height, width) or | |
| (batch_size, channels, frame, height, width). | |
| timesteps (Tensor): A batch of timesteps with shape (batch_size,). | |
| Returns: | |
| Tensor: The shifted timesteps. | |
| """ | |
| if len(samples.shape) == 3: | |
| _, m, _ = samples.shape | |
| elif len(samples.shape) in [4, 5]: | |
| m = math.prod(samples.shape[2:]) | |
| else: | |
| raise ValueError( | |
| "Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)" | |
| ) | |
| shift = get_normal_shift(m) | |
| return time_shift(shift, 1, timesteps) | |
| class TimestepShifter(ABC): | |
| def shift_timesteps(self, samples: Tensor, timesteps: Tensor) -> Tensor: | |
| pass | |
| class RectifiedFlowSchedulerOutput(BaseOutput): | |
| """ | |
| Output class for the scheduler's step function output. | |
| Args: | |
| prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the | |
| denoising loop. | |
| pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| The predicted denoised sample (x_{0}) based on the model output from the current timestep. | |
| `pred_original_sample` can be used to preview progress or for guidance. | |
| """ | |
| prev_sample: torch.FloatTensor | |
| pred_original_sample: Optional[torch.FloatTensor] = None | |
| class RectifiedFlowScheduler(SchedulerMixin, ConfigMixin, TimestepShifter): | |
| order = 1 | |
| def __init__( | |
| self, | |
| num_train_timesteps=1000, | |
| shifting: Optional[str] = None, | |
| base_resolution: int = 32**2, | |
| ): | |
| super().__init__() | |
| self.init_noise_sigma = 1.0 | |
| self.num_inference_steps = None | |
| self.timesteps = self.sigmas = torch.linspace( | |
| 1, 1 / num_train_timesteps, num_train_timesteps | |
| ) | |
| self.delta_timesteps = self.timesteps - torch.cat( | |
| [self.timesteps[1:], torch.zeros_like(self.timesteps[-1:])] | |
| ) | |
| self.shifting = shifting | |
| self.base_resolution = base_resolution | |
| def shift_timesteps(self, samples: Tensor, timesteps: Tensor) -> Tensor: | |
| if self.shifting == "SD3": | |
| return sd3_resolution_dependent_timestep_shift(samples, timesteps) | |
| elif self.shifting == "SimpleDiffusion": | |
| return simple_diffusion_resolution_dependent_timestep_shift( | |
| samples, timesteps, self.base_resolution | |
| ) | |
| return timesteps | |
| def set_timesteps( | |
| self, | |
| num_inference_steps: int, | |
| samples: Tensor, | |
| device: Union[str, torch.device] = None, | |
| ): | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. | |
| Args: | |
| num_inference_steps (`int`): The number of diffusion steps used when generating samples. | |
| samples (`Tensor`): A batch of samples with shape. | |
| device (`Union[str, torch.device]`, *optional*): The device to which the timesteps tensor will be moved. | |
| """ | |
| num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps) | |
| timesteps = torch.linspace(1, 1 / num_inference_steps, num_inference_steps).to( | |
| device | |
| ) | |
| self.timesteps = self.shift_timesteps(samples, timesteps) | |
| self.delta_timesteps = self.timesteps - torch.cat( | |
| [self.timesteps[1:], torch.zeros_like(self.timesteps[-1:])] | |
| ) | |
| self.num_inference_steps = num_inference_steps | |
| self.sigmas = self.timesteps | |
| def scale_model_input( | |
| self, sample: torch.FloatTensor, timestep: Optional[int] = None | |
| ) -> torch.FloatTensor: | |
| # pylint: disable=unused-argument | |
| """ | |
| Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
| current timestep. | |
| Args: | |
| sample (`torch.FloatTensor`): input sample | |
| timestep (`int`, optional): current timestep | |
| Returns: | |
| `torch.FloatTensor`: scaled input sample | |
| """ | |
| return sample | |
| def step( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: torch.FloatTensor, | |
| sample: torch.FloatTensor, | |
| eta: float = 0.0, | |
| use_clipped_model_output: bool = False, | |
| generator=None, | |
| variance_noise: Optional[torch.FloatTensor] = None, | |
| return_dict: bool = True, | |
| ) -> Union[RectifiedFlowSchedulerOutput, Tuple]: | |
| # pylint: disable=unused-argument | |
| """ | |
| Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
| process from the learned model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.FloatTensor`): | |
| The direct output from learned diffusion model. | |
| timestep (`float`): | |
| The current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| A current instance of a sample created by the diffusion process. | |
| eta (`float`): | |
| The weight of noise for added noise in diffusion step. | |
| use_clipped_model_output (`bool`, defaults to `False`): | |
| If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary | |
| because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no | |
| clipping has happened, "corrected" `model_output` would coincide with the one provided as input and | |
| `use_clipped_model_output` has no effect. | |
| generator (`torch.Generator`, *optional*): | |
| A random number generator. | |
| variance_noise (`torch.FloatTensor`): | |
| Alternative to generating noise with `generator` by directly providing the noise for the variance | |
| itself. Useful for methods such as [`CycleDiffusion`]. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`. | |
| Returns: | |
| [`~schedulers.scheduling_utils.RectifiedFlowSchedulerOutput`] or `tuple`: | |
| If return_dict is `True`, [`~schedulers.rf_scheduler.RectifiedFlowSchedulerOutput`] is returned, | |
| otherwise a tuple is returned where the first element is the sample tensor. | |
| """ | |
| if self.num_inference_steps is None: | |
| raise ValueError( | |
| "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
| ) | |
| if timestep.ndim == 0: | |
| # Global timestep | |
| current_index = (self.timesteps - timestep).abs().argmin() | |
| dt = self.delta_timesteps.gather(0, current_index.unsqueeze(0)) | |
| else: | |
| # Timestep per token | |
| assert timestep.ndim == 2 | |
| current_index = ( | |
| (self.timesteps[:, None, None] - timestep[None]).abs().argmin(dim=0) | |
| ) | |
| dt = self.delta_timesteps[current_index] | |
| # Special treatment for zero timestep tokens - set dt to 0 so prev_sample = sample | |
| dt = torch.where(timestep == 0.0, torch.zeros_like(dt), dt)[..., None] | |
| prev_sample = sample - dt * model_output | |
| if not return_dict: | |
| return (prev_sample,) | |
| return RectifiedFlowSchedulerOutput(prev_sample=prev_sample) | |
| def add_noise( | |
| self, | |
| original_samples: torch.FloatTensor, | |
| noise: torch.FloatTensor, | |
| timesteps: torch.FloatTensor, | |
| ) -> torch.FloatTensor: | |
| sigmas = timesteps | |
| sigmas = append_dims(sigmas, original_samples.ndim) | |
| alphas = 1 - sigmas | |
| noisy_samples = alphas * original_samples + sigmas * noise | |
| return noisy_samples | |