deepseek_r1_API / app.py
levalencia's picture
Update app.py
e4968b3 verified
raw
history blame
5.35 kB
import streamlit as st
from huggingface_hub import InferenceClient
import os
from typing import Iterator
API_KEY = os.getenv("TOGETHER_API_KEY")
if not API_KEY:
raise ValueError("API key is missing! Make sure TOGETHER_API_KEY is set in the Secrets.")
# Initialize the client with Together AI provider
@st.cache_resource
def get_client():
return InferenceClient(
provider="together",
api_key=API_KEY
)
def process_file(file) -> str:
"""Process uploaded file and return its content"""
if file is None:
return ""
try:
content = file.getvalue().decode('utf-8')
return content
except Exception as e:
return f"Error reading file: {str(e)}"
def generate_response(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
files=None
) -> Iterator[str]:
"""Generate streaming response from the model"""
client = get_client()
# Process file if uploaded
# Process multiple files if uploaded
all_content = ""
if files:
file_contents = [process_file(file) for file in files]
all_content = "\n\n".join([
f"File {i+1} content:\n{content}"
for i, content in enumerate(file_contents)
])
if all_content:
message = f"{all_content}\n\nUser message:\n{message}"
messages = [{"role": "system", "content": system_message}]
# Add conversation history
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
# Add current message
messages.append({"role": "user", "content": message})
try:
stream = client.chat.completions.create(
model="deepseek-ai/DeepSeek-R1",
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
)
for chunk in stream:
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
yield chunk.choices[0].delta.content
except Exception as e:
yield f"Error: {str(e)}"
def main():
st.set_page_config(page_title="DeepSeek Chat", page_icon="💭", layout="wide")
# Initialize session state for chat history
if "messages" not in st.session_state:
st.session_state.messages = []
st.title("DeepSeek Chat with File Upload")
st.markdown("Chat with DeepSeek AI model. You can optionally upload files for the model to analyze.")
# Sidebar for parameters
with st.sidebar:
st.header("Settings")
system_message = st.text_area(
"System Message",
value="You are a friendly Chatbot.",
height=100
)
max_tokens = st.slider(
"Max Tokens",
min_value=1,
max_value=8192,
value=8192,
step=1
)
temperature = st.slider(
"Temperature",
min_value=0.1,
max_value=4.0,
value=0.0,
step=0.1
)
top_p = st.slider(
"Top-p (nucleus sampling)",
min_value=0.1,
max_value=1.0,
value=0.95,
step=0.05
)
uploaded_file = st.file_uploader(
"Upload File (optional)",
type=['txt', 'py', 'md', 'swift', 'java', 'js', 'ts', 'rb', 'go',
'php', 'c', 'cpp', 'h', 'hpp', 'cs', 'html', 'css', 'kt', 'svelte'],
accept_multiple_files=True # Add this parameter
)
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# Chat input
if prompt := st.chat_input("What would you like to know?"):
# Display user message
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Generate and display assistant response
with st.chat_message("assistant"):
response_placeholder = st.empty()
full_response = ""
# Get message history for context
history = [(msg["content"], next_msg["content"])
for msg, next_msg in zip(st.session_state.messages[::2], st.session_state.messages[1::2])]
# Stream the response
for response_chunk in generate_response(
prompt,
history,
system_message,
max_tokens,
temperature,
top_p,
uploaded_file
):
full_response += response_chunk
print(full_response)
response_placeholder.markdown(full_response + "▌")
response_placeholder.markdown(full_response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": full_response})
if __name__ == "__main__":
main()