Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,7 +12,43 @@ import os
|
|
| 12 |
import uuid
|
| 13 |
from datetime import datetime
|
| 14 |
|
| 15 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
STYLE_PRESETS = [
|
| 18 |
{
|
|
@@ -127,7 +163,46 @@ css = '''
|
|
| 127 |
footer {display: none !important}
|
| 128 |
'''
|
| 129 |
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
with gr.Blocks(css=css) as demo:
|
| 133 |
with gr.Column(elem_classes="container"):
|
|
@@ -149,6 +224,12 @@ with gr.Blocks(css=css) as demo:
|
|
| 149 |
type="value"
|
| 150 |
)
|
| 151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
with gr.Column(elem_classes="preset-container"):
|
| 153 |
gr.Markdown("### 🎭 Magic Transformations")
|
| 154 |
preset_grid = []
|
|
@@ -158,16 +239,11 @@ with gr.Blocks(css=css) as demo:
|
|
| 158 |
elem_classes="preset-card"
|
| 159 |
)
|
| 160 |
preset_button.click(
|
| 161 |
-
|
| 162 |
-
|
|
|
|
| 163 |
)
|
| 164 |
preset_grid.append(preset_button)
|
| 165 |
-
|
| 166 |
-
prompt_input = gr.Textbox(
|
| 167 |
-
label="🎨 Custom Prompt",
|
| 168 |
-
placeholder="Describe your desired transformation in detail...",
|
| 169 |
-
lines=3
|
| 170 |
-
)
|
| 171 |
|
| 172 |
generate_button = gr.Button("🚀 Generate Magic", variant="primary")
|
| 173 |
|
|
|
|
| 12 |
import uuid
|
| 13 |
from datetime import datetime
|
| 14 |
|
| 15 |
+
# Model paths
|
| 16 |
+
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
|
| 17 |
+
vae_model_path = "stabilityai/sd-vae-ft-mse"
|
| 18 |
+
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
|
| 19 |
+
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model")
|
| 20 |
+
ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model")
|
| 21 |
+
|
| 22 |
+
device = "cuda"
|
| 23 |
+
|
| 24 |
+
# Initialize the noise scheduler
|
| 25 |
+
noise_scheduler = DDIMScheduler(
|
| 26 |
+
num_train_timesteps=1000,
|
| 27 |
+
beta_start=0.00085,
|
| 28 |
+
beta_end=0.012,
|
| 29 |
+
beta_schedule="scaled_linear",
|
| 30 |
+
clip_sample=False,
|
| 31 |
+
set_alpha_to_one=False,
|
| 32 |
+
steps_offset=1,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# Load models
|
| 36 |
+
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
|
| 37 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 38 |
+
base_model_path,
|
| 39 |
+
torch_dtype=torch.float16,
|
| 40 |
+
scheduler=noise_scheduler,
|
| 41 |
+
vae=vae
|
| 42 |
+
).to(device)
|
| 43 |
+
|
| 44 |
+
ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)
|
| 45 |
+
ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device)
|
| 46 |
+
|
| 47 |
+
# Initialize FaceAnalysis
|
| 48 |
+
app = FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider'])
|
| 49 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
| 50 |
+
|
| 51 |
+
cv2.setNumThreads(1)
|
| 52 |
|
| 53 |
STYLE_PRESETS = [
|
| 54 |
{
|
|
|
|
| 163 |
footer {display: none !important}
|
| 164 |
'''
|
| 165 |
|
| 166 |
+
@spaces.GPU(enable_queue=True)
|
| 167 |
+
def generate_image(images, gender, prompt, progress=gr.Progress(track_tqdm=True)):
|
| 168 |
+
if not prompt:
|
| 169 |
+
prompt = f"Professional portrait of a {gender.lower()}"
|
| 170 |
+
|
| 171 |
+
faceid_all_embeds = []
|
| 172 |
+
first_iteration = True
|
| 173 |
+
preserve_face_structure = True
|
| 174 |
+
face_strength = 2.1
|
| 175 |
+
likeness_strength = 0.7
|
| 176 |
+
|
| 177 |
+
for image in images:
|
| 178 |
+
face = cv2.imread(image)
|
| 179 |
+
faces = app.get(face)
|
| 180 |
+
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
| 181 |
+
faceid_all_embeds.append(faceid_embed)
|
| 182 |
+
|
| 183 |
+
if first_iteration and preserve_face_structure:
|
| 184 |
+
face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224)
|
| 185 |
+
first_iteration = False
|
| 186 |
+
|
| 187 |
+
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
|
| 188 |
+
|
| 189 |
+
image = ip_model_plus.generate(
|
| 190 |
+
prompt=prompt,
|
| 191 |
+
faceid_embeds=average_embedding,
|
| 192 |
+
scale=likeness_strength,
|
| 193 |
+
face_image=face_image,
|
| 194 |
+
shortcut=True,
|
| 195 |
+
s_scale=face_strength,
|
| 196 |
+
width=512,
|
| 197 |
+
height=912,
|
| 198 |
+
num_inference_steps=100
|
| 199 |
+
)
|
| 200 |
+
return image
|
| 201 |
+
|
| 202 |
+
def create_preset_click_handler(idx, prompt_input):
|
| 203 |
+
def handler():
|
| 204 |
+
return {"value": STYLE_PRESETS[idx]["prompt"]}
|
| 205 |
+
return handler
|
| 206 |
|
| 207 |
with gr.Blocks(css=css) as demo:
|
| 208 |
with gr.Column(elem_classes="container"):
|
|
|
|
| 224 |
type="value"
|
| 225 |
)
|
| 226 |
|
| 227 |
+
prompt_input = gr.Textbox(
|
| 228 |
+
label="🎨 Custom Prompt",
|
| 229 |
+
placeholder="Describe your desired transformation in detail...",
|
| 230 |
+
lines=3
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
with gr.Column(elem_classes="preset-container"):
|
| 234 |
gr.Markdown("### 🎭 Magic Transformations")
|
| 235 |
preset_grid = []
|
|
|
|
| 239 |
elem_classes="preset-card"
|
| 240 |
)
|
| 241 |
preset_button.click(
|
| 242 |
+
fn=create_preset_click_handler(idx, prompt_input),
|
| 243 |
+
inputs=[],
|
| 244 |
+
outputs=[prompt_input]
|
| 245 |
)
|
| 246 |
preset_grid.append(preset_button)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
generate_button = gr.Button("🚀 Generate Magic", variant="primary")
|
| 249 |
|