import torch import spaces from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL from transformers import AutoFeatureExtractor from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus from huggingface_hub import hf_hub_download from insightface.app import FaceAnalysis from insightface.utils import face_align import gradio as gr import cv2 import os import uuid from datetime import datetime # Model paths base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE" vae_model_path = "stabilityai/sd-vae-ft-mse" image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model") ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model") device = "cuda" # Initialize the noise scheduler noise_scheduler = DDIMScheduler( num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, steps_offset=1, ) # Load models vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16) pipe = StableDiffusionPipeline.from_pretrained( base_model_path, torch_dtype=torch.float16, scheduler=noise_scheduler, vae=vae ).to(device) ip_model = IPAdapterFaceID(pipe, ip_ckpt, device) ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device) # Initialize FaceAnalysis app = FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider']) app.prepare(ctx_id=0, det_size=(640, 640)) cv2.setNumThreads(1) STYLE_PRESETS = [ { "title": "Mona Lisa", "prompt": "A mesmerizing portrait in the style of Leonardo da Vinci's Mona Lisa, renaissance oil painting, soft sfumato technique, mysterious smile, Florentine background, museum quality, masterpiece", "preview": "🎨" }, { "title": "Iron Hero", "prompt": "Hyper realistic portrait as a high-tech superhero, wearing advanced metallic suit, arc reactor glow, inside high-tech lab, dramatic lighting, cinematic composition", "preview": "🦾" }, { "title": "Ancient Egyptian", "prompt": "Portrait as an ancient Egyptian pharaoh, wearing golden headdress and royal regalia, hieroglyphics background, dramatic desert lighting, archaeological discovery style", "preview": "👑" }, { "title": "Sherlock Holmes", "prompt": "Victorian era detective portrait, wearing deerstalker hat and cape, holding magnifying glass, foggy London background, mysterious atmosphere, detailed illustration", "preview": "🔍" }, { "title": "Star Wars Jedi", "prompt": "Epic portrait as a Jedi Master, wearing traditional robes, holding lightsaber, temple background, force aura effect, cinematic lighting, movie poster quality", "preview": "⚔️" }, { "title": "Van Gogh Style", "prompt": "Self-portrait in the style of Vincent van Gogh, bold brushstrokes, vibrant colors, post-impressionist style, emotional intensity, starry background", "preview": "🎨" }, { "title": "Greek God", "prompt": "Mythological portrait as an Olympian deity, wearing flowing robes, golden laurel wreath, Mount Olympus background, godly aura, classical Greek art style", "preview": "⚡" }, { "title": "Medieval Knight", "prompt": "Noble knight portrait, wearing ornate plate armor, holding sword and shield, castle background, heraldic designs, medieval manuscript style", "preview": "🛡️" }, { "title": "Matrix Hero", "prompt": "Cyberpunk portrait in digital reality, wearing black trench coat and sunglasses, green code rain effect, dystopian atmosphere, cinematic style", "preview": "🕶️" }, { "title": "Pirate Captain", "prompt": "Swashbuckling pirate captain portrait, wearing tricorn hat and colonial coat, ship's deck background, dramatic sea storm, golden age of piracy style", "preview": "🏴‍☠️" } ] # Updated CSS for improved readability and scrolling css = ''' /* Allow body to scroll freely */ html, body { margin: 0; padding: 0; background: #f0f2f5; font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; color: #333333; overflow-y: scroll; } /* Outer container can grow but allow scrolling */ #component-0 { width: 100%; box-sizing: border-box; padding: 20px; } /* Main content container with good contrast and spacing */ .container { background-color: #ffffff; color: #333333; border-radius: 10px; padding: 30px; margin: 0 auto 40px auto; /* Margin bottom to ensure space for scrolling */ box-shadow: 0 8px 16px rgba(0, 0, 0, 0.15); max-width: 1400px; } /* Header styling with higher contrast text on dark background */ .header { text-align: center; margin-bottom: 2rem; background: #003366; padding: 2rem; border-radius: 10px; color: #ffffff; } /* Preset grid styling */ .preset-grid { display: grid; grid-template-columns: repeat(auto-fill, minmax(250px, 1fr)); gap: 1rem; margin: 1rem 0; } /* Preset cards: clear borders, high contrast text */ .preset-card { background: #ffffff; padding: 1rem; border-radius: 8px; cursor: pointer; transition: all 0.3s ease; border: 2px solid #003366; text-align: center; color: #003366; font-weight: bold; } .preset-card:hover { transform: translateY(-3px); box-shadow: 0 6px 18px rgba(0, 0, 0, 0.2); background: #e6f0ff; } /* Larger emoji styling */ .preset-emoji { font-size: 2.5rem; margin-bottom: 0.5rem; } /* Input container with a lighter background for contrast */ .input-container { background: #e6f0ff; color: #003366; padding: 1.5rem; border-radius: 8px; margin-bottom: 1rem; border: 1px solid #003366; } /* Output gallery with a clear border and white background */ .output-gallery { border: 2px solid #003366; border-radius: 8px; padding: 10px; background: #ffffff; } /* Ensure any footer is hidden */ footer { display: none !important; } ''' @spaces.GPU(enable_queue=True) def generate_image(images, gender, prompt, progress=gr.Progress(track_tqdm=True)): if not prompt: prompt = f"Professional portrait of a {gender.lower()}" # Add specific keywords to ensure single person prompt = f"{prompt}, single person, solo portrait, one person only, centered composition" # Add negative prompt to prevent multiple people negative_prompt = ( "multiple people, group photo, crowd, double portrait, triple portrait, " "many faces, multiple faces, two faces, three faces, multiple views, collage, photo grid" ) faceid_all_embeds = [] first_iteration = True preserve_face_structure = True face_strength = 2.1 likeness_strength = 0.7 for image in images: face = cv2.imread(image) faces = app.get(face) if not faces: continue faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) faceid_all_embeds.append(faceid_embed) # For the first face, keep a reference image aligned if first_iteration and preserve_face_structure: face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224) first_iteration = False if not faceid_all_embeds: return None # Average embedding across all provided images average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0) # Generate the new image using IP-Adapter FaceID Plus image = ip_model_plus.generate( prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=average_embedding, scale=likeness_strength, face_image=face_image, shortcut=True, s_scale=face_strength, width=512, height=768, num_inference_steps=100, guidance_scale=7.5 ) return image def create_preset_click_handler(idx, prompt_input): def handler(): return {"value": STYLE_PRESETS[idx]["prompt"]} return handler with gr.Blocks(css=css) as demo: # You could add a visitor badge or other element here if desired # For now, we omit it to focus on the scrolling and contrast fixes with gr.Column(elem_classes="container"): with gr.Column(elem_classes="header"): gr.HTML("

✨ MagicFace V3

") gr.HTML("

Transform Your Face Into Legendary Characters!

") with gr.Row(): with gr.Column(scale=1): images_input = gr.Files( label="📸 Upload Your Face Photos", file_types=["image"], elem_classes="input-container" ) gender_input = gr.Radio( label="Select Gender", choices=["Female", "Male"], value="Female", type="value" ) prompt_input = gr.Textbox( label="🎨 Custom Prompt", placeholder="Describe your desired transformation in detail...", lines=3 ) with gr.Column(elem_classes="preset-container"): gr.Markdown("### 🎭 Magic Transformations") preset_grid = [] for idx, preset in enumerate(STYLE_PRESETS): preset_button = gr.Button( f"{preset['preview']} {preset['title']}", elem_classes="preset-card" ) preset_button.click( fn=create_preset_click_handler(idx, prompt_input), inputs=[], outputs=[prompt_input] ) preset_grid.append(preset_button) generate_button = gr.Button("🚀 Generate Magic", variant="primary") with gr.Column(scale=1): output_gallery = gr.Gallery( label="Magic Gallery", elem_classes="output-gallery", columns=2 ) with gr.Accordion("📖 Quick Guide", open=False): gr.Markdown(""" ### How to Use MagicFace V3 1. Upload one or more face photos 2. Select your gender 3. Choose a magical transformation or write your own prompt 4. Click 'Generate Magic' ### Pro Tips - Upload multiple angles of your face for better results - Try combining different historical or fictional characters - Feel free to modify the preset prompts - Click on generated images to view them in full size Scroll to see more content if your screen is small. Enjoy! """) generate_button.click( fn=generate_image, inputs=[images_input, gender_input, prompt_input], outputs=output_gallery ) demo.queue() demo.launch()