MagicFace-V3 / app (28).py
ginipick's picture
Upload 2 files
4c9a6f0 verified
raw
history blame
9.32 kB
import spaces
import argparse
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
from PIL import Image
from transformers import pipeline
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# Hugging Face ํ† ํฐ ์„ค์ •
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("HF_TOKEN environment variable is not set")
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
torch.backends.cuda.matmul.allow_tf32 = True
# Create gallery directory if it doesn't exist
if not path.exists(gallery_path):
os.makedirs(gallery_path, exist_ok=True)
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
# Model initialization
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
# ์ธ์ฆ๋œ ๋ชจ๋ธ ๋กœ๋“œ
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
use_auth_token=HF_TOKEN
)
# Hyper-SD LoRA ๋กœ๋“œ
pipe.load_lora_weights(
hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
use_auth_token=HF_TOKEN
)
)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
def save_image(image):
"""Save the generated image and return the path"""
try:
if not os.path.exists(gallery_path):
try:
os.makedirs(gallery_path, exist_ok=True)
except Exception as e:
print(f"Failed to create gallery directory: {str(e)}")
return None
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
random_suffix = os.urandom(4).hex()
filename = f"generated_{timestamp}_{random_suffix}.png"
filepath = os.path.join(gallery_path, filename)
try:
if isinstance(image, Image.Image):
image.save(filepath, "PNG", quality=100)
else:
image = Image.fromarray(image)
image.save(filepath, "PNG", quality=100)
return filepath
except Exception as e:
print(f"Failed to save image: {str(e)}")
return None
except Exception as e:
print(f"Error in save_image: {str(e)}")
return None
# ์˜ˆ์‹œ ํ”„๋กฌํ”„ํŠธ ์ •์˜
examples = [
["A 3D Star Wars Darth Vader helmet, highly detailed metallic finish"],
["A 3D Iron Man mask with glowing eyes and metallic red-gold finish"],
["A detailed 3D Pokemon Pikachu figure with glossy surface"],
["A 3D geometric abstract cube transforming into a sphere, metallic finish"],
["A 3D steampunk mechanical heart with brass and copper details"],
["A 3D crystal dragon with transparent iridescent scales"],
["A 3D futuristic hovering drone with neon light accents"],
["A 3D ancient Greek warrior helmet with ornate details"],
["A 3D robotic butterfly with mechanical wings and metallic finish"],
["A 3D floating magical crystal orb with internal energy swirls"]
]
@spaces.GPU
def process_and_save_image(height=1024, width=1024, steps=8, scales=3.5, prompt="", seed=None):
global pipe
if seed is None:
seed = torch.randint(0, 1000000, (1,)).item()
# ํ•œ๊ธ€ ๊ฐ์ง€ ๋ฐ ๋ฒˆ์—ญ
def contains_korean(text):
return any(ord('๊ฐ€') <= ord(c) <= ord('ํžฃ') for c in text)
# ํ”„๋กฌํ”„ํŠธ ์ „์ฒ˜๋ฆฌ
if contains_korean(prompt):
translated = translator(prompt)[0]['translation_text']
prompt = translated
formatted_prompt = f"wbgmsst, 3D, {prompt} ,white background"
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
try:
generated_image = pipe(
prompt=[formatted_prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
saved_path = save_image(generated_image)
if saved_path is None:
print("Warning: Failed to save generated image")
return generated_image
except Exception as e:
print(f"Error in image generation: {str(e)}")
return None
def get_random_seed():
return torch.randint(0, 1000000, (1,)).item()
def process_example(prompt):
return process_and_save_image(
height=1024,
width=1024,
steps=8,
scales=3.5,
prompt=prompt,
seed=get_random_seed()
)
# Gradio ์ธํ„ฐํŽ˜์ด์Šค
with gr.Blocks(
theme=gr.themes.Soft(),
css="""
.container {
background: linear-gradient(to bottom right, #1a1a1a, #4a4a4a);
border-radius: 20px;
padding: 20px;
}
.generate-btn {
background: linear-gradient(45deg, #2196F3, #00BCD4);
border: none;
color: white;
font-weight: bold;
border-radius: 10px;
}
.output-image {
border-radius: 15px;
box-shadow: 0 8px 16px rgba(0,0,0,0.2);
}
.fixed-width {
max-width: 1024px;
margin: auto;
}
"""
) as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 20px;">
<h1 style="font-size: 2.5rem; color: #2196F3;">3D Style Image Generator</h1>
<p style="font-size: 1.2rem; color: #666;">Create amazing 3D-style images with AI</p>
</div>
"""
)
with gr.Row(elem_classes="container"):
with gr.Column(scale=3):
prompt = gr.Textbox(
label="Image Description",
placeholder="Describe the 3D image you want to create...",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
seed = gr.Number(
label="Seed (random by default, set for reproducibility)",
value=get_random_seed(),
precision=0
)
randomize_seed = gr.Button("๐ŸŽฒ Randomize Seed", elem_classes=["generate-btn"])
generate_btn = gr.Button(
"โœจ Generate Image",
elem_classes=["generate-btn"]
)
with gr.Column(scale=4, elem_classes=["fixed-width"]):
output = gr.Image(
label="Generated Image",
elem_id="output-image",
elem_classes=["output-image", "fixed-width"],
value="3d.webp"
)
# Examples ์„น์…˜
gr.Examples(
examples=examples,
inputs=prompt,
outputs=output,
fn=process_example, # ์ˆ˜์ •๋œ ํ•จ์ˆ˜ ์‚ฌ์šฉ
cache_examples=False,
examples_per_page=5
)
def update_seed():
return get_random_seed()
# ์ด๋ฒคํŠธ ํ•ธ๋“ค๋Ÿฌ
generate_btn.click(
process_and_save_image,
inputs=[height, width, steps, scales, prompt, seed],
outputs=output
).then(
update_seed,
outputs=[seed]
)
randomize_seed.click(
update_seed,
outputs=[seed]
)
if __name__ == "__main__":
demo.launch(allowed_paths=[PERSISTENT_DIR])