Spaces:
Runtime error
Runtime error
| import spaces | |
| import argparse | |
| import os | |
| import time | |
| from os import path | |
| import shutil | |
| from datetime import datetime | |
| from safetensors.torch import load_file | |
| from huggingface_hub import hf_hub_download | |
| import gradio as gr | |
| import torch | |
| from diffusers import FluxPipeline | |
| from PIL import Image | |
| from transformers import pipeline | |
| translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") | |
| # Hugging Face ν ν° μ€μ | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| if HF_TOKEN is None: | |
| raise ValueError("HF_TOKEN environment variable is not set") | |
| # Setup and initialization code | |
| cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
| PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".") | |
| gallery_path = path.join(PERSISTENT_DIR, "gallery") | |
| os.environ["TRANSFORMERS_CACHE"] = cache_path | |
| os.environ["HF_HUB_CACHE"] = cache_path | |
| os.environ["HF_HOME"] = cache_path | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| # Create gallery directory if it doesn't exist | |
| if not path.exists(gallery_path): | |
| os.makedirs(gallery_path, exist_ok=True) | |
| class timer: | |
| def __init__(self, method_name="timed process"): | |
| self.method = method_name | |
| def __enter__(self): | |
| self.start = time.time() | |
| print(f"{self.method} starts") | |
| def __exit__(self, exc_type, exc_val, exc_tb): | |
| end = time.time() | |
| print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
| # Model initialization | |
| if not path.exists(cache_path): | |
| os.makedirs(cache_path, exist_ok=True) | |
| # μΈμ¦λ λͺ¨λΈ λ‘λ | |
| pipe = FluxPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-dev", | |
| torch_dtype=torch.bfloat16, | |
| use_auth_token=HF_TOKEN | |
| ) | |
| # Hyper-SD LoRA λ‘λ | |
| pipe.load_lora_weights( | |
| hf_hub_download( | |
| "ByteDance/Hyper-SD", | |
| "Hyper-FLUX.1-dev-8steps-lora.safetensors", | |
| use_auth_token=HF_TOKEN | |
| ) | |
| ) | |
| pipe.fuse_lora(lora_scale=0.125) | |
| pipe.to(device="cuda", dtype=torch.bfloat16) | |
| def save_image(image): | |
| """Save the generated image and return the path""" | |
| try: | |
| if not os.path.exists(gallery_path): | |
| try: | |
| os.makedirs(gallery_path, exist_ok=True) | |
| except Exception as e: | |
| print(f"Failed to create gallery directory: {str(e)}") | |
| return None | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| random_suffix = os.urandom(4).hex() | |
| filename = f"generated_{timestamp}_{random_suffix}.png" | |
| filepath = os.path.join(gallery_path, filename) | |
| try: | |
| if isinstance(image, Image.Image): | |
| image.save(filepath, "PNG", quality=100) | |
| else: | |
| image = Image.fromarray(image) | |
| image.save(filepath, "PNG", quality=100) | |
| return filepath | |
| except Exception as e: | |
| print(f"Failed to save image: {str(e)}") | |
| return None | |
| except Exception as e: | |
| print(f"Error in save_image: {str(e)}") | |
| return None | |
| # μμ ν둬ννΈ μ μ | |
| examples = [ | |
| ["A 3D Star Wars Darth Vader helmet, highly detailed metallic finish"], | |
| ["A 3D Iron Man mask with glowing eyes and metallic red-gold finish"], | |
| ["A detailed 3D Pokemon Pikachu figure with glossy surface"], | |
| ["A 3D geometric abstract cube transforming into a sphere, metallic finish"], | |
| ["A 3D steampunk mechanical heart with brass and copper details"], | |
| ["A 3D crystal dragon with transparent iridescent scales"], | |
| ["A 3D futuristic hovering drone with neon light accents"], | |
| ["A 3D ancient Greek warrior helmet with ornate details"], | |
| ["A 3D robotic butterfly with mechanical wings and metallic finish"], | |
| ["A 3D floating magical crystal orb with internal energy swirls"] | |
| ] | |
| def process_and_save_image(height=1024, width=1024, steps=8, scales=3.5, prompt="", seed=None): | |
| global pipe | |
| if seed is None: | |
| seed = torch.randint(0, 1000000, (1,)).item() | |
| # νκΈ κ°μ§ λ° λ²μ | |
| def contains_korean(text): | |
| return any(ord('κ°') <= ord(c) <= ord('ν£') for c in text) | |
| # ν둬ννΈ μ μ²λ¦¬ | |
| if contains_korean(prompt): | |
| translated = translator(prompt)[0]['translation_text'] | |
| prompt = translated | |
| formatted_prompt = f"wbgmsst, 3D, {prompt} ,white background" | |
| with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): | |
| try: | |
| generated_image = pipe( | |
| prompt=[formatted_prompt], | |
| generator=torch.Generator().manual_seed(int(seed)), | |
| num_inference_steps=int(steps), | |
| guidance_scale=float(scales), | |
| height=int(height), | |
| width=int(width), | |
| max_sequence_length=256 | |
| ).images[0] | |
| saved_path = save_image(generated_image) | |
| if saved_path is None: | |
| print("Warning: Failed to save generated image") | |
| return generated_image | |
| except Exception as e: | |
| print(f"Error in image generation: {str(e)}") | |
| return None | |
| def get_random_seed(): | |
| return torch.randint(0, 1000000, (1,)).item() | |
| def process_example(prompt): | |
| return process_and_save_image( | |
| height=1024, | |
| width=1024, | |
| steps=8, | |
| scales=3.5, | |
| prompt=prompt, | |
| seed=get_random_seed() | |
| ) | |
| # Gradio μΈν°νμ΄μ€ | |
| with gr.Blocks( | |
| theme=gr.themes.Soft(), | |
| css=""" | |
| .container { | |
| background: linear-gradient(to bottom right, #1a1a1a, #4a4a4a); | |
| border-radius: 20px; | |
| padding: 20px; | |
| } | |
| .generate-btn { | |
| background: linear-gradient(45deg, #2196F3, #00BCD4); | |
| border: none; | |
| color: white; | |
| font-weight: bold; | |
| border-radius: 10px; | |
| } | |
| .output-image { | |
| border-radius: 15px; | |
| box-shadow: 0 8px 16px rgba(0,0,0,0.2); | |
| } | |
| .fixed-width { | |
| max-width: 1024px; | |
| margin: auto; | |
| } | |
| """ | |
| ) as demo: | |
| gr.HTML( | |
| """ | |
| <div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 20px;"> | |
| <h1 style="font-size: 2.5rem; color: #2196F3;">3D Style Image Generator</h1> | |
| <p style="font-size: 1.2rem; color: #666;">Create amazing 3D-style images with AI</p> | |
| </div> | |
| """ | |
| ) | |
| with gr.Row(elem_classes="container"): | |
| with gr.Column(scale=3): | |
| prompt = gr.Textbox( | |
| label="Image Description", | |
| placeholder="Describe the 3D image you want to create...", | |
| lines=3 | |
| ) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| with gr.Row(): | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=1152, | |
| step=64, | |
| value=1024 | |
| ) | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=1152, | |
| step=64, | |
| value=1024 | |
| ) | |
| with gr.Row(): | |
| steps = gr.Slider( | |
| label="Inference Steps", | |
| minimum=6, | |
| maximum=25, | |
| step=1, | |
| value=8 | |
| ) | |
| scales = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=0.0, | |
| maximum=5.0, | |
| step=0.1, | |
| value=3.5 | |
| ) | |
| seed = gr.Number( | |
| label="Seed (random by default, set for reproducibility)", | |
| value=get_random_seed(), | |
| precision=0 | |
| ) | |
| randomize_seed = gr.Button("π² Randomize Seed", elem_classes=["generate-btn"]) | |
| generate_btn = gr.Button( | |
| "β¨ Generate Image", | |
| elem_classes=["generate-btn"] | |
| ) | |
| with gr.Column(scale=4, elem_classes=["fixed-width"]): | |
| output = gr.Image( | |
| label="Generated Image", | |
| elem_id="output-image", | |
| elem_classes=["output-image", "fixed-width"], | |
| value="3d.webp" | |
| ) | |
| # Examples μΉμ | |
| gr.Examples( | |
| examples=examples, | |
| inputs=prompt, | |
| outputs=output, | |
| fn=process_example, # μμ λ ν¨μ μ¬μ© | |
| cache_examples=False, | |
| examples_per_page=5 | |
| ) | |
| def update_seed(): | |
| return get_random_seed() | |
| # μ΄λ²€νΈ νΈλ€λ¬ | |
| generate_btn.click( | |
| process_and_save_image, | |
| inputs=[height, width, steps, scales, prompt, seed], | |
| outputs=output | |
| ).then( | |
| update_seed, | |
| outputs=[seed] | |
| ) | |
| randomize_seed.click( | |
| update_seed, | |
| outputs=[seed] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(allowed_paths=[PERSISTENT_DIR]) |