|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
import plotly.graph_objects as go |
|
from datetime import datetime |
|
import os |
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
target_models = { |
|
"openfree/flux-lora-korea-palace": "https://huggingface.co/openfree/flux-lora-korea-palace", |
|
"seawolf2357/hanbok": "https://huggingface.co/seawolf2357/hanbok", |
|
"LGAI-EXAONE/EXAONE-3.5-32B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-32B-Instruct", |
|
"LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct", |
|
"LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct", |
|
"ginipick/flux-lora-eric-cat": "https://huggingface.co/ginipick/flux-lora-eric-cat", |
|
"seawolf2357/flux-lora-car-rolls-royce": "https://huggingface.co/seawolf2357/flux-lora-car-rolls-royce", |
|
|
|
"moreh/Llama-3-Motif-102B-Instruct": "https://huggingface.co/moreh/Llama-3-Motif-102B-Instruct", |
|
"moreh/Llama-3-Motif-102B": "https://huggingface.co/moreh/Llama-3-Motif-102B", |
|
|
|
"Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-sft-dpo-27B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-sft-dpo-27B", |
|
"AALF/gemma-2-27b-it-SimPO-37K": "https://huggingface.co/AALF/gemma-2-27b-it-SimPO-37K", |
|
"nbeerbower/mistral-nemo-wissenschaft-12B": "https://huggingface.co/nbeerbower/mistral-nemo-wissenschaft-12B", |
|
"Saxo/Linkbricks-Horizon-AI-Korean-Mistral-Nemo-sft-dpo-12B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Mistral-Nemo-sft-dpo-12B", |
|
"princeton-nlp/gemma-2-9b-it-SimPO": "https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO", |
|
"migtissera/Tess-v2.5-Gemma-2-27B-alpha": "https://huggingface.co/migtissera/Tess-v2.5-Gemma-2-27B-alpha", |
|
"DeepMount00/Llama-3.1-8b-Ita": "https://huggingface.co/DeepMount00/Llama-3.1-8b-Ita", |
|
"cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b": "https://huggingface.co/cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b", |
|
"ai-human-lab/EEVE-Korean_Instruct-10.8B-expo": "https://huggingface.co/ai-human-lab/EEVE-Korean_Instruct-10.8B-expo", |
|
"VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct": "https://huggingface.co/VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct", |
|
"Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B", |
|
"AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5": "https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5", |
|
"mlabonne/Daredevil-8B-abliterated": "https://huggingface.co/mlabonne/Daredevil-8B-abliterated", |
|
"ENERGY-DRINK-LOVE/eeve_dpo-v3": "https://huggingface.co/ENERGY-DRINK-LOVE/eeve_dpo-v3", |
|
"migtissera/Trinity-2-Codestral-22B": "https://huggingface.co/migtissera/Trinity-2-Codestral-22B", |
|
"Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B", |
|
"mlabonne/Daredevil-8B-abliterated-dpomix": "https://huggingface.co/mlabonne/Daredevil-8B-abliterated-dpomix", |
|
"yanolja/EEVE-Korean-Instruct-10.8B-v1.0": "https://huggingface.co/yanolja/EEVE-Korean-Instruct-10.8B-v1.0", |
|
"vicgalle/Configurable-Llama-3.1-8B-Instruct": "https://huggingface.co/vicgalle/Configurable-Llama-3.1-8B-Instruct", |
|
"T3Q-LLM/T3Q-LLM1-sft1.0-dpo1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-sft1.0-dpo1.0", |
|
"Eurdem/Defne-llama3.1-8B": "https://huggingface.co/Eurdem/Defne-llama3.1-8B", |
|
"BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B": "https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B", |
|
"BAAI/Infinity-Instruct-3M-0625-Llama3-8B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Llama3-8B", |
|
"T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0", |
|
"BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B": "https://huggingface.co/BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B", |
|
"mightbe/EEVE-10.8B-Multiturn": "https://huggingface.co/mightbe/EEVE-10.8B-Multiturn", |
|
"hyemijo/omed-llama3.1-8b": "https://huggingface.co/hyemijo/omed-llama3.1-8b", |
|
"yanolja/Bookworm-10.7B-v0.4-DPO": "https://huggingface.co/yanolja/Bookworm-10.7B-v0.4-DPO", |
|
"algograp-Inc/algograpV4": "https://huggingface.co/algograp-Inc/algograpV4", |
|
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75", |
|
"chihoonlee10/T3Q-LLM-MG-DPO-v1.0": "https://huggingface.co/chihoonlee10/T3Q-LLM-MG-DPO-v1.0", |
|
"vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B": "https://huggingface.co/vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B", |
|
"RLHFlow/LLaMA3-iterative-DPO-final": "https://huggingface.co/RLHFlow/LLaMA3-iterative-DPO-final", |
|
"SEOKDONG/llama3.1_korean_v0.1_sft_by_aidx": "https://huggingface.co/SEOKDONG/llama3.1_korean_v0.1_sft_by_aidx", |
|
"spow12/Ko-Qwen2-7B-Instruct": "https://huggingface.co/spow12/Ko-Qwen2-7B-Instruct", |
|
"BAAI/Infinity-Instruct-3M-0625-Qwen2-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Qwen2-7B", |
|
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half", |
|
"T3Q-LLM/T3Q-LLM1-CV-v2.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-CV-v2.0", |
|
"migtissera/Trinity-2-Codestral-22B-v0.2": "https://huggingface.co/migtissera/Trinity-2-Codestral-22B-v0.2", |
|
"sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval": "https://huggingface.co/sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval", |
|
"MaziyarPanahi/Llama-3-8B-Instruct-v0.10": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.10", |
|
"MaziyarPanahi/Llama-3-8B-Instruct-v0.9": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.9", |
|
"zhengr/MixTAO-7Bx2-MoE-v8.1": "https://huggingface.co/zhengr/MixTAO-7Bx2-MoE-v8.1", |
|
"TIGER-Lab/MAmmoTH2-8B-Plus": "https://huggingface.co/TIGER-Lab/MAmmoTH2-8B-Plus", |
|
"OpenBuddy/openbuddy-qwen1.5-14b-v21.1-32k": "https://huggingface.co/OpenBuddy/openbuddy-qwen1.5-14b-v21.1-32k", |
|
"haoranxu/Llama-3-Instruct-8B-CPO-SimPO": "https://huggingface.co/haoranxu/Llama-3-Instruct-8B-CPO-SimPO", |
|
"Weyaxi/Einstein-v7-Qwen2-7B": "https://huggingface.co/Weyaxi/Einstein-v7-Qwen2-7B", |
|
"DKYoon/kosolar-hermes-test": "https://huggingface.co/DKYoon/kosolar-hermes-test", |
|
"vilm/Quyen-Pro-v0.1": "https://huggingface.co/vilm/Quyen-Pro-v0.1", |
|
"chihoonlee10/T3Q-LLM-MG-v1.0": "https://huggingface.co/chihoonlee10/T3Q-LLM-MG-v1.0", |
|
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25", |
|
"ai-human-lab/EEVE-Korean-10.8B-RAFT": "https://huggingface.co/ai-human-lab/EEVE-Korean-10.8B-RAFT", |
|
"princeton-nlp/Llama-3-Base-8B-SFT-RDPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-RDPO", |
|
"MaziyarPanahi/Llama-3-8B-Instruct-v0.8": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.8", |
|
"chihoonlee10/T3Q-ko-solar-dpo-v7.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v7.0", |
|
"jondurbin/bagel-8b-v1.0": "https://huggingface.co/jondurbin/bagel-8b-v1.0", |
|
"DeepMount00/Llama-3-8b-Ita": "https://huggingface.co/DeepMount00/Llama-3-8b-Ita", |
|
"VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct": "https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct", |
|
"princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2", |
|
"AIDX-ktds/ktdsbaseLM-v0.11-based-on-openchat3.5": "https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.11-based-on-openchat3.5", |
|
"princeton-nlp/Llama-3-Base-8B-SFT-KTO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-KTO", |
|
"maywell/Mini_Synatra_SFT": "https://huggingface.co/maywell/Mini_Synatra_SFT", |
|
"princeton-nlp/Llama-3-Base-8B-SFT-ORPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-ORPO", |
|
"princeton-nlp/Llama-3-Instruct-8B-CPO-v0.2": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-CPO-v0.2", |
|
"spow12/Qwen2-7B-ko-Instruct-orpo-ver_2.0_wo_chat": "https://huggingface.co/spow12/Qwen2-7B-ko-Instruct-orpo-ver_2.0_wo_chat", |
|
"princeton-nlp/Llama-3-Base-8B-SFT-DPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-DPO", |
|
"princeton-nlp/Llama-3-Instruct-8B-ORPO": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-ORPO", |
|
"lcw99/llama-3-10b-it-kor-extented-chang": "https://huggingface.co/lcw99/llama-3-10b-it-kor-extented-chang", |
|
"migtissera/Llama-3-8B-Synthia-v3.5": "https://huggingface.co/migtissera/Llama-3-8B-Synthia-v3.5", |
|
"megastudyedu/M-SOLAR-10.7B-v1.4-dpo": "https://huggingface.co/megastudyedu/M-SOLAR-10.7B-v1.4-dpo", |
|
"T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0", |
|
"maywell/Synatra-10.7B-v0.4": "https://huggingface.co/maywell/Synatra-10.7B-v0.4", |
|
"nlpai-lab/KULLM3": "https://huggingface.co/nlpai-lab/KULLM3", |
|
"abacusai/Llama-3-Smaug-8B": "https://huggingface.co/abacusai/Llama-3-Smaug-8B", |
|
"gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.1": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.1", |
|
"BAAI/Infinity-Instruct-3M-0625-Mistral-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Mistral-7B", |
|
"openchat/openchat_3.5": "https://huggingface.co/openchat/openchat_3.5", |
|
"T3Q-LLM/T3Q-LLM1-v2.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-v2.0", |
|
"T3Q-LLM/T3Q-LLM1-CV-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-CV-v1.0", |
|
"ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.1": "https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.1", |
|
"macadeliccc/Samantha-Qwen-2-7B": "https://huggingface.co/macadeliccc/Samantha-Qwen-2-7B", |
|
"openchat/openchat-3.5-0106": "https://huggingface.co/openchat/openchat-3.5-0106", |
|
"NousResearch/Nous-Hermes-2-SOLAR-10.7B": "https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B", |
|
"UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1", |
|
"MTSAIR/multi_verse_model": "https://huggingface.co/MTSAIR/multi_verse_model", |
|
"gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.0": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.0", |
|
"VIRNECT/llama-3-Korean-8B": "https://huggingface.co/VIRNECT/llama-3-Korean-8B", |
|
"ENERGY-DRINK-LOVE/SOLAR_merge_DPOv3": "https://huggingface.co/ENERGY-DRINK-LOVE/SOLAR_merge_DPOv3", |
|
"SeaLLMs/SeaLLMs-v3-7B-Chat": "https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat", |
|
"VIRNECT/llama-3-Korean-8B-V2": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-V2", |
|
"MLP-KTLim/llama-3-Korean-Bllossom-8B": "https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B", |
|
"Magpie-Align/Llama-3-8B-Magpie-Align-v0.3": "https://huggingface.co/Magpie-Align/Llama-3-8B-Magpie-Align-v0.3", |
|
"cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2": "https://huggingface.co/cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2", |
|
"SkyOrbis/SKY-Ko-Llama3-8B-lora": "https://huggingface.co/SkyOrbis/SKY-Ko-Llama3-8B-lora", |
|
"4yo1/llama3-eng-ko-8b-sl5": "https://huggingface.co/4yo1/llama3-eng-ko-8b-sl5", |
|
"kimwooglae/WebSquareAI-Instruct-llama-3-8B-v0.5.39": "https://huggingface.co/kimwooglae/WebSquareAI-Instruct-llama-3-8B-v0.5.39", |
|
"ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.2": "https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.2", |
|
"lcw99/llama-3-10b-it-kor-extented-chang-pro8": "https://huggingface.co/lcw99/llama-3-10b-it-kor-extented-chang-pro8", |
|
"BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B", |
|
"migtissera/Tess-2.0-Llama-3-8B": "https://huggingface.co/migtissera/Tess-2.0-Llama-3-8B", |
|
"BAAI/Infinity-Instruct-3M-0613-Mistral-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0613-Mistral-7B", |
|
"yeonwoo780/cydinfo-llama3-8b-lora-v01": "https://huggingface.co/yeonwoo780/cydinfo-llama3-8b-lora-v01", |
|
"vicgalle/ConfigurableSOLAR-10.7B": "https://huggingface.co/vicgalle/ConfigurableSOLAR-10.7B", |
|
"chihoonlee10/T3Q-ko-solar-jo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-jo-v1.0", |
|
"Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.4": "https://huggingface.co/Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.4", |
|
"Edentns/DataVortexS-10.7B-dpo-v1.0": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.0", |
|
"SJ-Donald/SJ-SOLAR-10.7b-DPO": "https://huggingface.co/SJ-Donald/SJ-SOLAR-10.7b-DPO", |
|
"lemon-mint/gemma-ko-7b-it-v0.40": "https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.40", |
|
"GyuHyeonWkdWkdMan/naps-llama-3.1-8b-instruct-v0.3": "https://huggingface.co/GyuHyeonWkdWkdMan/naps-llama-3.1-8b-instruct-v0.3", |
|
"hyeogi/SOLAR-10.7B-v1.5": "https://huggingface.co/hyeogi/SOLAR-10.7B-v1.5", |
|
"etri-xainlp/llama3-8b-dpo_v1": "https://huggingface.co/etri-xainlp/llama3-8b-dpo_v1", |
|
"LDCC/LDCC-SOLAR-10.7B": "https://huggingface.co/LDCC/LDCC-SOLAR-10.7B", |
|
"chlee10/T3Q-Llama3-8B-Inst-sft1.0": "https://huggingface.co/chlee10/T3Q-Llama3-8B-Inst-sft1.0", |
|
"lemon-mint/gemma-ko-7b-it-v0.41": "https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.41", |
|
"chlee10/T3Q-Llama3-8B-sft1.0-dpo1.0": "https://huggingface.co/chlee10/T3Q-Llama3-8B-sft1.0-dpo1.0", |
|
"maywell/Synatra-7B-Instruct-v0.3-pre": "https://huggingface.co/maywell/Synatra-7B-Instruct-v0.3-pre", |
|
"UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2", |
|
"hwkwon/S-SOLAR-10.7B-v1.4": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.4", |
|
"12thD/ko-Llama-3-8B-sft-v0.3": "https://huggingface.co/12thD/ko-Llama-3-8B-sft-v0.3", |
|
"hkss/hk-SOLAR-10.7B-v1.4": "https://huggingface.co/hkss/hk-SOLAR-10.7B-v1.4", |
|
"lookuss/test-llilu": "https://huggingface.co/lookuss/test-llilu", |
|
"chihoonlee10/T3Q-ko-solar-dpo-v3.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v3.0", |
|
"chihoonlee10/T3Q-ko-solar-dpo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v1.0", |
|
"lcw99/llama-3-10b-wiki-240709-f": "https://huggingface.co/lcw99/llama-3-10b-wiki-240709-f", |
|
"Edentns/DataVortexS-10.7B-v0.4": "https://huggingface.co/Edentns/DataVortexS-10.7B-v0.4", |
|
"princeton-nlp/Llama-3-Instruct-8B-KTO": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-KTO", |
|
"spow12/kosolar_4.1_sft": "https://huggingface.co/spow12/kosolar_4.1_sft", |
|
"natong19/Qwen2-7B-Instruct-abliterated": "https://huggingface.co/natong19/Qwen2-7B-Instruct-abliterated", |
|
"megastudyedu/ME-dpo-7B-v1.1": "https://huggingface.co/megastudyedu/ME-dpo-7B-v1.1", |
|
"01-ai/Yi-1.5-9B-Chat-16K": "https://huggingface.co/01-ai/Yi-1.5-9B-Chat-16K", |
|
"Edentns/DataVortexS-10.7B-dpo-v0.1": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v0.1", |
|
"Alphacode-AI/AlphaMist7B-slr-v4-slow": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v4-slow", |
|
"chihoonlee10/T3Q-ko-solar-sft-dpo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-sft-dpo-v1.0", |
|
"hwkwon/S-SOLAR-10.7B-v1.1": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.1", |
|
"DopeorNope/Dear_My_best_Friends-13B": "https://huggingface.co/DopeorNope/Dear_My_best_Friends-13B", |
|
"GyuHyeonWkdWkdMan/NAPS-llama-3.1-8b-instruct-v0.3.2": "https://huggingface.co/GyuHyeonWkdWkdMan/NAPS-llama-3.1-8b-instruct-v0.3.2", |
|
"PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct": "https://huggingface.co/PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct", |
|
"vicgalle/ConfigurableHermes-7B": "https://huggingface.co/vicgalle/ConfigurableHermes-7B", |
|
"maywell/PiVoT-10.7B-Mistral-v0.2": "https://huggingface.co/maywell/PiVoT-10.7B-Mistral-v0.2", |
|
"failspy/Meta-Llama-3-8B-Instruct-abliterated-v3": "https://huggingface.co/failspy/Meta-Llama-3-8B-Instruct-abliterated-v3", |
|
"lemon-mint/gemma-ko-7b-instruct-v0.50": "https://huggingface.co/lemon-mint/gemma-ko-7b-instruct-v0.50", |
|
"ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_Open-Hermes_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_Open-Hermes_LDCC-SOLAR-10.7B_SFT", |
|
"maywell/PiVoT-0.1-early": "https://huggingface.co/maywell/PiVoT-0.1-early", |
|
"hwkwon/S-SOLAR-10.7B-v1.3": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.3", |
|
"werty1248/Llama-3-Ko-8B-Instruct-AOG": "https://huggingface.co/werty1248/Llama-3-Ko-8B-Instruct-AOG", |
|
"Alphacode-AI/AlphaMist7B-slr-v2": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v2", |
|
"maywell/koOpenChat-sft": "https://huggingface.co/maywell/koOpenChat-sft", |
|
"lemon-mint/gemma-7b-openhermes-v0.80": "https://huggingface.co/lemon-mint/gemma-7b-openhermes-v0.80", |
|
"VIRNECT/llama-3-Korean-8B-r-v1": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-r-v1", |
|
"Alphacode-AI/AlphaMist7B-slr-v1": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v1", |
|
"Loyola/Mistral-7b-ITmodel": "https://huggingface.co/Loyola/Mistral-7b-ITmodel", |
|
"VIRNECT/llama-3-Korean-8B-r-v2": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-r-v2", |
|
"NLPark/AnFeng_v3.1-Avocet": "https://huggingface.co/NLPark/AnFeng_v3.1-Avocet", |
|
"maywell/Synatra_TbST11B_EP01": "https://huggingface.co/maywell/Synatra_TbST11B_EP01", |
|
"GritLM/GritLM-7B-KTO": "https://huggingface.co/GritLM/GritLM-7B-KTO", |
|
"01-ai/Yi-34B-Chat": "https://huggingface.co/01-ai/Yi-34B-Chat", |
|
"ValiantLabs/Llama3.1-8B-ShiningValiant2": "https://huggingface.co/ValiantLabs/Llama3.1-8B-ShiningValiant2", |
|
"princeton-nlp/Llama-3-Base-8B-SFT-CPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-CPO", |
|
"hyokwan/hkcode_llama3_8b": "https://huggingface.co/hyokwan/hkcode_llama3_8b", |
|
"UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3", |
|
"yuntaeyang/SOLAR-10.7B-Instructlora_sftt-v1.0": "https://huggingface.co/yuntaeyang/SOLAR-10.7B-Instructlora_sftt-v1.0", |
|
"juungwon/Llama-3-cs-LoRA": "https://huggingface.co/juungwon/Llama-3-cs-LoRA", |
|
"gangyeolkim/llama-3-chat": "https://huggingface.co/gangyeolkim/llama-3-chat", |
|
"mncai/llama2-13b-dpo-v3": "https://huggingface.co/mncai/llama2-13b-dpo-v3", |
|
"maywell/Synatra-Zephyr-7B-v0.01": "https://huggingface.co/maywell/Synatra-Zephyr-7B-v0.01", |
|
"ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT", |
|
"juungwon/Llama-3-constructionsafety-LoRA": "https://huggingface.co/juungwon/Llama-3-constructionsafety-LoRA", |
|
"princeton-nlp/Mistral-7B-Base-SFT-SimPO": "https://huggingface.co/princeton-nlp/Mistral-7B-Base-SFT-SimPO", |
|
"moondriller/solar10B-eugeneparkthebestv2": "https://huggingface.co/moondriller/solar10B-eugeneparkthebestv2", |
|
"chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0": "https://huggingface.co/chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0", |
|
"Edentns/DataVortexS-10.7B-dpo-v1.7": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.7", |
|
"gamzadole/llama3_instruct_tuning_without_pretraing": "https://huggingface.co/gamzadole/llama3_instruct_tuning_without_pretraing", |
|
"saltlux/Ko-Llama3-Luxia-8B": "https://huggingface.co/saltlux/Ko-Llama3-Luxia-8B", |
|
"kimdeokgi/ko-pt-model-test1": "https://huggingface.co/kimdeokgi/ko-pt-model-test1", |
|
"maywell/Synatra-11B-Testbench-2": "https://huggingface.co/maywell/Synatra-11B-Testbench-2", |
|
"Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO": "https://huggingface.co/Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO", |
|
"vicgalle/Configurable-Mistral-7B": "https://huggingface.co/vicgalle/Configurable-Mistral-7B", |
|
"ENERGY-DRINK-LOVE/leaderboard_inst_v1.5_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.5_LDCC-SOLAR-10.7B_SFT", |
|
"beomi/Llama-3-Open-Ko-8B-Instruct-preview": "https://huggingface.co/beomi/Llama-3-Open-Ko-8B-Instruct-preview", |
|
"Edentns/DataVortexS-10.7B-dpo-v1.3": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.3", |
|
"spow12/Llama3_ko_4.2_sft": "https://huggingface.co/spow12/Llama3_ko_4.2_sft", |
|
"maywell/Llama-3-Ko-8B-Instruct": "https://huggingface.co/maywell/Llama-3-Ko-8B-Instruct", |
|
"T3Q-LLM/T3Q-LLM3-NC-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM3-NC-v1.0", |
|
"ehartford/dolphin-2.2.1-mistral-7b": "https://huggingface.co/ehartford/dolphin-2.2.1-mistral-7b", |
|
"hwkwon/S-SOLAR-10.7B-SFT-v1.3": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-SFT-v1.3", |
|
"sel303/llama3-instruct-diverce-v2.0": "https://huggingface.co/sel303/llama3-instruct-diverce-v2.0", |
|
"4yo1/llama3-eng-ko-8b-sl3": "https://huggingface.co/4yo1/llama3-eng-ko-8b-sl3", |
|
"hkss/hk-SOLAR-10.7B-v1.1": "https://huggingface.co/hkss/hk-SOLAR-10.7B-v1.1", |
|
"Open-Orca/Mistral-7B-OpenOrca": "https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca", |
|
"hyokwan/familidata": "https://huggingface.co/hyokwan/familidata", |
|
"uukuguy/zephyr-7b-alpha-dare-0.85": "https://huggingface.co/uukuguy/zephyr-7b-alpha-dare-0.85", |
|
"gwonny/nox-solar-10.7b-v4-kolon-all-5": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-5", |
|
"shleeeee/mistral-ko-tech-science-v1": "https://huggingface.co/shleeeee/mistral-ko-tech-science-v1", |
|
"Deepnoid/deep-solar-eeve-KorSTS": "https://huggingface.co/Deepnoid/deep-solar-eeve-KorSTS", |
|
"AIdenU/Mistral-7B-v0.2-ko-Y24_v1.0": "https://huggingface.co/AIdenU/Mistral-7B-v0.2-ko-Y24_v1.0", |
|
"tlphams/gollm-tendency-45": "https://huggingface.co/tlphams/gollm-tendency-45", |
|
"realPCH/ko_solra_merge": "https://huggingface.co/realPCH/ko_solra_merge", |
|
"Cartinoe5930/original-KoRAE-13b": "https://huggingface.co/Cartinoe5930/original-KoRAE-13b", |
|
"GAI-LLM/Yi-Ko-6B-dpo-v5": "https://huggingface.co/GAI-LLM/Yi-Ko-6B-dpo-v5", |
|
"Minirecord/Mini_DPO_test02": "https://huggingface.co/Minirecord/Mini_DPO_test02", |
|
"AIJUUD/juud-Mistral-7B-dpo": "https://huggingface.co/AIJUUD/juud-Mistral-7B-dpo", |
|
"gwonny/nox-solar-10.7b-v4-kolon-all-10": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-10", |
|
"jieunhan/TEST_MODEL": "https://huggingface.co/jieunhan/TEST_MODEL", |
|
"etri-xainlp/kor-llama2-13b-dpo": "https://huggingface.co/etri-xainlp/kor-llama2-13b-dpo", |
|
"ifuseok/yi-ko-playtus-instruct-v0.2": "https://huggingface.co/ifuseok/yi-ko-playtus-instruct-v0.2", |
|
"Cartinoe5930/original-KoRAE-13b-3ep": "https://huggingface.co/Cartinoe5930/original-KoRAE-13b-3ep", |
|
"Trofish/KULLM-RLHF": "https://huggingface.co/Trofish/KULLM-RLHF", |
|
"wkshin89/Yi-Ko-6B-Instruct-v1.0": "https://huggingface.co/wkshin89/Yi-Ko-6B-Instruct-v1.0", |
|
"momo/polyglot-ko-12.8b-Chat-QLoRA-Merge": "https://huggingface.co/momo/polyglot-ko-12.8b-Chat-QLoRA-Merge", |
|
"PracticeLLM/Custom-KoLLM-13B-v5": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v5", |
|
"BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B", |
|
"MRAIRR/minillama3_8b_all": "https://huggingface.co/MRAIRR/minillama3_8b_all", |
|
"failspy/Phi-3-medium-4k-instruct-abliterated-v3": "https://huggingface.co/failspy/Phi-3-medium-4k-instruct-abliterated-v3", |
|
"DILAB-HYU/koquality-polyglot-12.8b": "https://huggingface.co/DILAB-HYU/koquality-polyglot-12.8b", |
|
"kyujinpy/Korean-OpenOrca-v3": "https://huggingface.co/kyujinpy/Korean-OpenOrca-v3", |
|
"4yo1/llama3-eng-ko-8b": "https://huggingface.co/4yo1/llama3-eng-ko-8b", |
|
"4yo1/llama3-eng-ko-8": "https://huggingface.co/4yo1/llama3-eng-ko-8", |
|
"4yo1/llama3-eng-ko-8-llama": "https://huggingface.co/4yo1/llama3-eng-ko-8-llama", |
|
"PracticeLLM/Custom-KoLLM-13B-v2": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v2", |
|
"kyujinpy/KOR-Orca-Platypus-13B-v2": "https://huggingface.co/kyujinpy/KOR-Orca-Platypus-13B-v2", |
|
"ghost-x/ghost-7b-alpha": "https://huggingface.co/ghost-x/ghost-7b-alpha", |
|
"HumanF-MarkrAI/pub-llama-13B-v6": "https://huggingface.co/HumanF-MarkrAI/pub-llama-13B-v6", |
|
"nlpai-lab/kullm-polyglot-5.8b-v2": "https://huggingface.co/nlpai-lab/kullm-polyglot-5.8b-v2", |
|
"maywell/Synatra-42dot-1.3B": "https://huggingface.co/maywell/Synatra-42dot-1.3B", |
|
"yhkim9362/gemma-en-ko-7b-v0.1": "https://huggingface.co/yhkim9362/gemma-en-ko-7b-v0.1", |
|
"yhkim9362/gemma-en-ko-7b-v0.2": "https://huggingface.co/yhkim9362/gemma-en-ko-7b-v0.2", |
|
"daekeun-ml/Llama-2-ko-OpenOrca-gugugo-13B": "https://huggingface.co/daekeun-ml/Llama-2-ko-OpenOrca-gugugo-13B", |
|
"beomi/Yi-Ko-6B": "https://huggingface.co/beomi/Yi-Ko-6B", |
|
"jojo0217/ChatSKKU5.8B": "https://huggingface.co/jojo0217/ChatSKKU5.8B", |
|
"Deepnoid/deep-solar-v2.0.7": "https://huggingface.co/Deepnoid/deep-solar-v2.0.7", |
|
"01-ai/Yi-1.5-9B": "https://huggingface.co/01-ai/Yi-1.5-9B", |
|
"PracticeLLM/Custom-KoLLM-13B-v4": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v4", |
|
"nuebaek/komt_mistral_mss_user_0_max_steps_80": "https://huggingface.co/nuebaek/komt_mistral_mss_user_0_max_steps_80", |
|
"dltjdgh0928/lsh_finetune_v0.11": "https://huggingface.co/dltjdgh0928/lsh_finetune_v0.11", |
|
"shleeeee/mistral-7b-wiki": "https://huggingface.co/shleeeee/mistral-7b-wiki", |
|
"nayohan/polyglot-ko-5.8b-Inst": "https://huggingface.co/nayohan/polyglot-ko-5.8b-Inst", |
|
"ifuseok/sft-solar-10.7b-v1.1": "https://huggingface.co/ifuseok/sft-solar-10.7b-v1.1", |
|
"Junmai/KIT-5.8b": "https://huggingface.co/Junmai/KIT-5.8b", |
|
"heegyu/polyglot-ko-3.8b-chat": "https://huggingface.co/heegyu/polyglot-ko-3.8b-chat", |
|
"etri-xainlp/polyglot-ko-12.8b-instruct": "https://huggingface.co/etri-xainlp/polyglot-ko-12.8b-instruct", |
|
"OpenBuddy/openbuddy-mistral2-7b-v20.3-32k": "https://huggingface.co/OpenBuddy/openbuddy-mistral2-7b-v20.3-32k", |
|
"sh2orc/Llama-3-Korean-8B": "https://huggingface.co/sh2orc/Llama-3-Korean-8B", |
|
"Deepnoid/deep-solar-eeve-v2.0.0": "https://huggingface.co/Deepnoid/deep-solar-eeve-v2.0.0", |
|
"Herry443/Mistral-7B-KNUT-ref": "https://huggingface.co/Herry443/Mistral-7B-KNUT-ref", |
|
"heegyu/polyglot-ko-5.8b-chat": "https://huggingface.co/heegyu/polyglot-ko-5.8b-chat", |
|
"jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.5.3": "https://huggingface.co/jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.5.3", |
|
"DILAB-HYU/KoQuality-Polyglot-5.8b": "https://huggingface.co/DILAB-HYU/KoQuality-Polyglot-5.8b", |
|
"Byungchae/k2s3_test_0000": "https://huggingface.co/Byungchae/k2s3_test_0000", |
|
"migtissera/Tess-v2.5-Phi-3-medium-128k-14B": "https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B", |
|
"kyujinpy/Korean-OpenOrca-13B": "https://huggingface.co/kyujinpy/Korean-OpenOrca-13B", |
|
"kyujinpy/KO-Platypus2-13B": "https://huggingface.co/kyujinpy/KO-Platypus2-13B", |
|
"jin05102518/Astral-7B-Instruct-v0.01": "https://huggingface.co/jin05102518/Astral-7B-Instruct-v0.01", |
|
"Byungchae/k2s3_test_0002": "https://huggingface.co/Byungchae/k2s3_test_0002", |
|
"NousResearch/Nous-Hermes-llama-2-7b": "https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b", |
|
"kaist-ai/prometheus-13b-v1.0": "https://huggingface.co/kaist-ai/prometheus-13b-v1.0", |
|
"sel303/llama3-diverce-ver1.0": "https://huggingface.co/sel303/llama3-diverce-ver1.0", |
|
"NousResearch/Nous-Capybara-7B": "https://huggingface.co/NousResearch/Nous-Capybara-7B", |
|
"rrw-x2/KoSOLAR-10.7B-DPO-v1.0": "https://huggingface.co/rrw-x2/KoSOLAR-10.7B-DPO-v1.0", |
|
"Edentns/DataVortexS-10.7B-v0.2": "https://huggingface.co/Edentns/DataVortexS-10.7B-v0.2", |
|
"Jsoo/Llama3-beomi-Open-Ko-8B-Instruct-preview-test6": "https://huggingface.co/Jsoo/Llama3-beomi-Open-Ko-8B-Instruct-preview-test6", |
|
"tlphams/gollm-instruct-all-in-one-v1": "https://huggingface.co/tlphams/gollm-instruct-all-in-one-v1", |
|
"Edentns/DataVortexTL-1.1B-v0.1": "https://huggingface.co/Edentns/DataVortexTL-1.1B-v0.1", |
|
"richard-park/llama3-pre1-ds": "https://huggingface.co/richard-park/llama3-pre1-ds", |
|
"ehartford/samantha-1.1-llama-33b": "https://huggingface.co/ehartford/samantha-1.1-llama-33b", |
|
"heegyu/LIMA-13b-hf": "https://huggingface.co/heegyu/LIMA-13b-hf", |
|
"heegyu/42dot_LLM-PLM-1.3B-mt": "https://huggingface.co/heegyu/42dot_LLM-PLM-1.3B-mt", |
|
"shleeeee/mistral-ko-7b-wiki-neft": "https://huggingface.co/shleeeee/mistral-ko-7b-wiki-neft", |
|
"EleutherAI/polyglot-ko-1.3b": "https://huggingface.co/EleutherAI/polyglot-ko-1.3b", |
|
"kyujinpy/Ko-PlatYi-6B-gu": "https://huggingface.co/kyujinpy/Ko-PlatYi-6B-gu", |
|
"sel303/llama3-diverce-ver1.6": "https://huggingface.co/sel303/llama3-diverce-ver1.6" |
|
} |
|
|
|
|
|
|
|
def get_models_data(progress=gr.Progress()): |
|
"""λͺ¨λΈ λ°μ΄ν° κ°μ Έμ€κΈ°""" |
|
def normalize_model_id(model_id): |
|
"""λͺ¨λΈ IDλ₯Ό μ κ·ν""" |
|
return model_id.strip().lower() |
|
|
|
url = "https://huggingface.co/api/models" |
|
|
|
try: |
|
progress(0, desc="Fetching models data...") |
|
|
|
|
|
all_found_models = [] |
|
sort_options = [ |
|
{'sort': 'downloads', 'direction': -1}, |
|
{'sort': 'lastModified', 'direction': -1}, |
|
{'sort': 'likes', 'direction': -1} |
|
] |
|
|
|
for sort_params in sort_options: |
|
params = { |
|
'full': 'true', |
|
'limit': 1000, |
|
**sort_params |
|
} |
|
|
|
headers = {'Accept': 'application/json'} |
|
|
|
response = requests.get(url, params=params, headers=headers) |
|
if response.status_code == 200: |
|
models = response.json() |
|
all_found_models.extend(models) |
|
|
|
|
|
seen_ids = set() |
|
filtered_models = [] |
|
for model in all_found_models: |
|
model_id = normalize_model_id(model.get('id', '')) |
|
if model_id not in seen_ids and model_id in [normalize_model_id(tid) for tid in target_models.keys()]: |
|
seen_ids.add(model_id) |
|
filtered_models.append(model) |
|
|
|
|
|
filtered_models.sort(key=lambda x: x.get('downloads', 0), reverse=True) |
|
|
|
|
|
for idx, model in enumerate(filtered_models, 1): |
|
model['rank'] = idx |
|
|
|
if not filtered_models: |
|
return create_error_plot(), "<div>μ νλ λͺ¨λΈμ λ°μ΄ν°λ₯Ό μ°Ύμ μ μμ΅λλ€.</div>", pd.DataFrame() |
|
|
|
progress(0.3, desc="Creating visualization...") |
|
|
|
|
|
fig = go.Figure() |
|
|
|
|
|
ids = [model['id'] for model in filtered_models] |
|
ranks = [model['rank'] for model in filtered_models] |
|
likes = [model.get('likes', 0) for model in filtered_models] |
|
downloads = [model.get('downloads', 0) for model in filtered_models] |
|
|
|
|
|
y_values = [1001 - r for r in ranks] |
|
|
|
|
|
fig.add_trace(go.Bar( |
|
x=ids, |
|
y=y_values, |
|
text=[f"Rank: {r}<br>Likes: {l}<br>Downloads: {d}" |
|
for r, l, d in zip(ranks, likes, downloads)], |
|
textposition='auto', |
|
marker_color='rgb(158,202,225)', |
|
opacity=0.8 |
|
)) |
|
|
|
fig.update_layout( |
|
title={ |
|
'text': 'Hugging Face Models Trending Rankings (Top 1000)', |
|
'y':0.95, |
|
'x':0.5, |
|
'xanchor': 'center', |
|
'yanchor': 'top' |
|
}, |
|
xaxis_title='Model ID', |
|
yaxis_title='Rank', |
|
yaxis=dict( |
|
ticktext=[str(i) for i in range(1, 1001, 50)], |
|
tickvals=[1001 - i for i in range(1, 1001, 50)], |
|
range=[0, 1000] |
|
), |
|
height=800, |
|
showlegend=False, |
|
template='plotly_white', |
|
xaxis_tickangle=-45 |
|
) |
|
|
|
progress(0.6, desc="Creating model cards...") |
|
|
|
|
|
html_content = """ |
|
<div style='padding: 20px; background: #f5f5f5;'> |
|
<h2 style='color: #2c3e50;'>Models Trending Rankings</h2> |
|
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'> |
|
""" |
|
|
|
|
|
for model in filtered_models: |
|
model_id = model['id'] |
|
rank = model['rank'] |
|
likes = model.get('likes', 0) |
|
downloads = model.get('downloads', 0) |
|
|
|
html_content += f""" |
|
<div style=' |
|
background: white; |
|
padding: 20px; |
|
border-radius: 10px; |
|
box-shadow: 0 2px 4px rgba(0,0,0,0.1); |
|
transition: transform 0.2s; |
|
'> |
|
<h3 style='color: #34495e;'>Rank #{rank} - {model_id}</h3> |
|
<p style='color: #7f8c8d;'>π Likes: {likes}</p> |
|
<p style='color: #7f8c8d;'>β¬οΈ Downloads: {downloads}</p> |
|
<a href='{target_models[model_id]}' |
|
target='_blank' |
|
style=' |
|
display: inline-block; |
|
padding: 8px 16px; |
|
background: #3498db; |
|
color: white; |
|
text-decoration: none; |
|
border-radius: 5px; |
|
transition: background 0.3s; |
|
'> |
|
Visit Model π |
|
</a> |
|
</div> |
|
""" |
|
|
|
|
|
for model_id in target_models: |
|
if model_id not in [m['id'] for m in filtered_models]: |
|
html_content += f""" |
|
<div style=' |
|
background: #f8f9fa; |
|
padding: 20px; |
|
border-radius: 10px; |
|
box-shadow: 0 2px 4px rgba(0,0,0,0.1); |
|
'> |
|
<h3 style='color: #34495e;'>{model_id}</h3> |
|
<p style='color: #7f8c8d;'>Not in top 1000</p> |
|
<a href='{target_models[model_id]}' |
|
target='_blank' |
|
style=' |
|
display: inline-block; |
|
padding: 8px 16px; |
|
background: #95a5a6; |
|
color: white; |
|
text-decoration: none; |
|
border-radius: 5px; |
|
'> |
|
Visit Model π |
|
</a> |
|
</div> |
|
""" |
|
|
|
html_content += "</div></div>" |
|
|
|
|
|
df_data = [] |
|
|
|
for model in filtered_models: |
|
df_data.append({ |
|
'Rank': model['rank'], |
|
'Model ID': model['id'], |
|
'Likes': model.get('likes', 'N/A'), |
|
'Downloads': model.get('downloads', 'N/A'), |
|
'URL': target_models[model['id']] |
|
}) |
|
|
|
for model_id in target_models: |
|
if model_id not in [m['id'] for m in filtered_models]: |
|
df_data.append({ |
|
'Rank': 'Not in top 1000', |
|
'Model ID': model_id, |
|
'Likes': 'N/A', |
|
'Downloads': 'N/A', |
|
'URL': target_models[model_id] |
|
}) |
|
|
|
df = pd.DataFrame(df_data) |
|
|
|
progress(1.0, desc="Complete!") |
|
return fig, html_content, df |
|
|
|
except Exception as e: |
|
print(f"Error in get_models_data: {str(e)}") |
|
return create_error_plot(), f"<div>μλ¬ λ°μ: {str(e)}</div>", pd.DataFrame() |
|
|
|
|
|
target_spaces = { |
|
|
|
"openfree/Korean-Leaderboard": "https://huggingface.co/spaces/openfree/Korean-Leaderboard", |
|
"ginipick/FLUXllama": "https://huggingface.co/spaces/ginipick/FLUXllama", |
|
"ginipick/SORA-3D": "https://huggingface.co/spaces/ginipick/SORA-3D", |
|
"fantaxy/Sound-AI-SFX": "https://huggingface.co/spaces/fantaxy/Sound-AI-SFX", |
|
"fantos/flx8lora": "https://huggingface.co/spaces/fantos/flx8lora", |
|
"ginigen/Canvas": "https://huggingface.co/spaces/ginigen/Canvas", |
|
"fantaxy/erotica": "https://huggingface.co/spaces/fantaxy/erotica", |
|
"ginipick/time-machine": "https://huggingface.co/spaces/ginipick/time-machine", |
|
"aiqcamp/FLUX-VisionReply": "https://huggingface.co/spaces/aiqcamp/FLUX-VisionReply", |
|
"openfree/Tetris-Game": "https://huggingface.co/spaces/openfree/Tetris-Game", |
|
"openfree/everychat": "https://huggingface.co/spaces/openfree/everychat", |
|
"VIDraft/mouse1": "https://huggingface.co/spaces/VIDraft/mouse1", |
|
"kolaslab/alpha-go": "https://huggingface.co/spaces/kolaslab/alpha-go", |
|
"ginipick/text3d": "https://huggingface.co/spaces/ginipick/text3d", |
|
"openfree/trending-board": "https://huggingface.co/spaces/openfree/trending-board", |
|
"cutechicken/tankwar": "https://huggingface.co/spaces/cutechicken/tankwar", |
|
"openfree/game-jewel": "https://huggingface.co/spaces/openfree/game-jewel", |
|
"VIDraft/mouse-chat": "https://huggingface.co/spaces/VIDraft/mouse-chat", |
|
"ginipick/AccDiffusion": "https://huggingface.co/spaces/ginipick/AccDiffusion", |
|
"aiqtech/Particle-Accelerator-Simulation": "https://huggingface.co/spaces/aiqtech/Particle-Accelerator-Simulation", |
|
"openfree/GiniGEN": "https://huggingface.co/spaces/openfree/GiniGEN", |
|
"kolaslab/3DAudio-Spectrum-Analyzer": "https://huggingface.co/spaces/kolaslab/3DAudio-Spectrum-Analyzer", |
|
"openfree/trending-news-24": "https://huggingface.co/spaces/openfree/trending-news-24", |
|
"ginipick/Realtime-FLUX": "https://huggingface.co/spaces/ginipick/Realtime-FLUX", |
|
"VIDraft/prime-number": "https://huggingface.co/spaces/VIDraft/prime-number", |
|
"kolaslab/zombie-game": "https://huggingface.co/spaces/kolaslab/zombie-game", |
|
"fantos/miro-game": "https://huggingface.co/spaces/fantos/miro-game", |
|
"kolaslab/shooting": "https://huggingface.co/spaces/kolaslab/shooting", |
|
"VIDraft/Mouse-Hackathon": "https://huggingface.co/spaces/VIDraft/Mouse-Hackathon", |
|
"upstage/open-ko-llm-leaderboard": "https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard", |
|
"LGAI-EXAONE/EXAONE-3.5-Instruct-Demo": "https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.5-Instruct-Demo", |
|
"NCSOFT/VARCO_Arena": "https://huggingface.co/spaces/NCSOFT/VARCO_Arena" |
|
} |
|
|
|
def get_spaces_data(sort_type="trending", progress=gr.Progress()): |
|
"""μ€νμ΄μ€ λ°μ΄ν° κ°μ Έμ€κΈ° (trending λλ modes)""" |
|
url = f"https://huggingface.co/api/spaces" |
|
params = { |
|
'full': 'true', |
|
'limit': 300 |
|
} |
|
|
|
if sort_type == "modes": |
|
params['sort'] = 'likes' |
|
|
|
try: |
|
progress(0, desc=f"Fetching {sort_type} spaces data...") |
|
response = requests.get(url, params=params) |
|
response.raise_for_status() |
|
all_spaces = response.json() |
|
|
|
|
|
space_ranks = {space['id']: idx + 1 for idx, space in enumerate(all_spaces)} |
|
|
|
|
|
spaces = [] |
|
for space in all_spaces: |
|
if space.get('id', '') in target_spaces: |
|
space['rank'] = space_ranks.get(space['id'], 'N/A') |
|
spaces.append(space) |
|
|
|
|
|
spaces.sort(key=lambda x: x['rank']) |
|
|
|
progress(0.3, desc="Creating visualization...") |
|
|
|
|
|
fig = go.Figure() |
|
|
|
|
|
ids = [space['id'] for space in spaces] |
|
ranks = [space['rank'] for space in spaces] |
|
likes = [space.get('likes', 0) for space in spaces] |
|
|
|
|
|
y_values = [301 - r for r in ranks] |
|
|
|
|
|
fig.add_trace(go.Bar( |
|
x=ids, |
|
y=y_values, |
|
text=[f"Rank: {r}<br>Likes: {l}" for r, l in zip(ranks, likes)], |
|
textposition='auto', |
|
marker_color='rgb(158,202,225)', |
|
opacity=0.8 |
|
)) |
|
|
|
fig.update_layout( |
|
title={ |
|
'text': f'Hugging Face Spaces {sort_type.title()} Rankings (Top 300)', |
|
'y':0.95, |
|
'x':0.5, |
|
'xanchor': 'center', |
|
'yanchor': 'top' |
|
}, |
|
xaxis_title='Space ID', |
|
yaxis_title='Rank', |
|
yaxis=dict( |
|
ticktext=[str(i) for i in range(1, 301, 20)], |
|
tickvals=[301 - i for i in range(1, 301, 20)], |
|
range=[0, 300] |
|
), |
|
height=800, |
|
showlegend=False, |
|
template='plotly_white', |
|
xaxis_tickangle=-45 |
|
) |
|
|
|
progress(0.6, desc="Creating space cards...") |
|
|
|
|
|
html_content = f""" |
|
<div style='padding: 20px; background: #f5f5f5;'> |
|
<h2 style='color: #2c3e50;'>{sort_type.title()} Rankings</h2> |
|
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'> |
|
""" |
|
|
|
for space in spaces: |
|
space_id = space.get('id', '') |
|
rank = space.get('rank', 'N/A') |
|
likes = space.get('likes', 0) |
|
title = space.get('title', 'No Title') |
|
description = space.get('description', 'No Description')[:100] |
|
|
|
html_content += f""" |
|
<div style=' |
|
background: white; |
|
padding: 20px; |
|
border-radius: 10px; |
|
box-shadow: 0 2px 4px rgba(0,0,0,0.1); |
|
transition: transform 0.2s; |
|
'> |
|
<h3 style='color: #34495e;'>Rank #{rank} - {space_id}</h3> |
|
<p style='color: #7f8c8d;'>π Likes: {likes}</p> |
|
<p style='color: #2c3e50;'>{title}</p> |
|
<p style='color: #7f8c8d; font-size: 0.9em;'>{description}...</p> |
|
<a href='{target_spaces[space_id]}' |
|
target='_blank' |
|
style=' |
|
display: inline-block; |
|
padding: 8px 16px; |
|
background: #3498db; |
|
color: white; |
|
text-decoration: none; |
|
border-radius: 5px; |
|
transition: background 0.3s; |
|
'> |
|
Visit Space π |
|
</a> |
|
</div> |
|
""" |
|
|
|
html_content += "</div></div>" |
|
|
|
|
|
df = pd.DataFrame([{ |
|
'Rank': space.get('rank', 'N/A'), |
|
'Space ID': space.get('id', ''), |
|
'Likes': space.get('likes', 'N/A'), |
|
'Title': space.get('title', 'N/A'), |
|
'URL': target_spaces[space.get('id', '')] |
|
} for space in spaces]) |
|
|
|
progress(1.0, desc="Complete!") |
|
return fig, html_content, df |
|
|
|
except Exception as e: |
|
error_html = f'<div style="color: red; padding: 20px;">Error: {str(e)}</div>' |
|
error_plot = create_error_plot() |
|
return error_plot, error_html, pd.DataFrame() |
|
|
|
|
|
|
|
|
|
def create_trend_visualization(spaces_data): |
|
if not spaces_data: |
|
return create_error_plot() |
|
|
|
fig = go.Figure() |
|
|
|
|
|
ranks = [] |
|
for idx, space in enumerate(spaces_data, 1): |
|
space_id = space.get('id', '') |
|
if space_id in target_spaces: |
|
ranks.append({ |
|
'id': space_id, |
|
'rank': idx, |
|
'likes': space.get('likes', 0), |
|
'title': space.get('title', 'N/A'), |
|
'views': space.get('views', 0) |
|
}) |
|
|
|
if not ranks: |
|
return create_error_plot() |
|
|
|
|
|
ranks.sort(key=lambda x: x['rank']) |
|
|
|
|
|
ids = [r['id'] for r in ranks] |
|
rank_values = [r['rank'] for r in ranks] |
|
likes = [r['likes'] for r in ranks] |
|
views = [r['views'] for r in ranks] |
|
|
|
|
|
fig.add_trace(go.Bar( |
|
x=ids, |
|
y=rank_values, |
|
text=[f"Rank: {r}<br>Likes: {l}<br>Views: {v}" for r, l, v in zip(rank_values, likes, views)], |
|
textposition='auto', |
|
marker_color='rgb(158,202,225)', |
|
opacity=0.8 |
|
)) |
|
|
|
fig.update_layout( |
|
title={ |
|
'text': 'Current Trending Ranks (All Target Spaces)', |
|
'y':0.95, |
|
'x':0.5, |
|
'xanchor': 'center', |
|
'yanchor': 'top' |
|
}, |
|
xaxis_title='Space ID', |
|
yaxis_title='Trending Rank', |
|
yaxis_autorange='reversed', |
|
height=800, |
|
showlegend=False, |
|
template='plotly_white', |
|
xaxis_tickangle=-45 |
|
) |
|
|
|
return fig |
|
|
|
|
|
def get_trending_spaces_without_token(): |
|
try: |
|
url = "https://huggingface.co/api/spaces" |
|
params = { |
|
'sort': 'likes', |
|
'direction': -1, |
|
'limit': 1000, |
|
'full': 'true' |
|
} |
|
|
|
response = requests.get(url, params=params) |
|
|
|
if response.status_code == 200: |
|
return response.json() |
|
else: |
|
print(f"API μμ² μ€ν¨ (ν ν° μμ): {response.status_code}") |
|
print(f"Response: {response.text}") |
|
return None |
|
except Exception as e: |
|
print(f"API νΈμΆ μ€ μλ¬ λ°μ (ν ν° μμ): {str(e)}") |
|
return None |
|
|
|
|
|
if not HF_TOKEN: |
|
get_trending_spaces = get_trending_spaces_without_token |
|
|
|
|
|
|
|
def create_error_plot(): |
|
fig = go.Figure() |
|
fig.add_annotation( |
|
text="λ°μ΄ν°λ₯Ό λΆλ¬μ¬ μ μμ΅λλ€.\n(API μΈμ¦μ΄ νμν©λλ€)", |
|
xref="paper", |
|
yref="paper", |
|
x=0.5, |
|
y=0.5, |
|
showarrow=False, |
|
font=dict(size=20) |
|
) |
|
fig.update_layout( |
|
title="Error Loading Data", |
|
height=400 |
|
) |
|
return fig |
|
|
|
|
|
def create_space_info_html(spaces_data): |
|
if not spaces_data: |
|
return "<div style='padding: 20px;'><h2>λ°μ΄ν°λ₯Ό λΆλ¬μ€λλ° μ€ν¨νμ΅λλ€.</h2></div>" |
|
|
|
html_content = """ |
|
<div style='padding: 20px;'> |
|
<h2 style='color: #2c3e50;'>Current Trending Rankings</h2> |
|
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'> |
|
""" |
|
|
|
|
|
for space_id in target_spaces.keys(): |
|
space_info = next((s for s in spaces_data if s.get('id') == space_id), None) |
|
if space_info: |
|
rank = next((idx for idx, s in enumerate(spaces_data, 1) if s.get('id') == space_id), 'N/A') |
|
html_content += f""" |
|
<div style=' |
|
background: white; |
|
padding: 20px; |
|
border-radius: 10px; |
|
box-shadow: 0 2px 4px rgba(0,0,0,0.1); |
|
transition: transform 0.2s; |
|
'> |
|
<h3 style='color: #34495e;'>#{rank} - {space_id}</h3> |
|
<p style='color: #7f8c8d;'>π Likes: {space_info.get('likes', 'N/A')}</p> |
|
<p style='color: #7f8c8d;'>π Views: {space_info.get('views', 'N/A')}</p> |
|
<p style='color: #2c3e50;'>{space_info.get('title', 'N/A')}</p> |
|
<p style='color: #7f8c8d; font-size: 0.9em;'>{space_info.get('description', 'N/A')[:100]}...</p> |
|
<a href='{target_spaces[space_id]}' |
|
target='_blank' |
|
style=' |
|
display: inline-block; |
|
padding: 8px 16px; |
|
background: #3498db; |
|
color: white; |
|
text-decoration: none; |
|
border-radius: 5px; |
|
transition: background 0.3s; |
|
'> |
|
Visit Space π |
|
</a> |
|
</div> |
|
""" |
|
else: |
|
html_content += f""" |
|
<div style=' |
|
background: #f8f9fa; |
|
padding: 20px; |
|
border-radius: 10px; |
|
box-shadow: 0 2px 4px rgba(0,0,0,0.1); |
|
'> |
|
<h3 style='color: #34495e;'>{space_id}</h3> |
|
<p style='color: #7f8c8d;'>Not in trending</p> |
|
<a href='{target_spaces[space_id]}' |
|
target='_blank' |
|
style=' |
|
display: inline-block; |
|
padding: 8px 16px; |
|
background: #95a5a6; |
|
color: white; |
|
text-decoration: none; |
|
border-radius: 5px; |
|
'> |
|
Visit Space π |
|
</a> |
|
</div> |
|
""" |
|
|
|
html_content += "</div></div>" |
|
return html_content |
|
|
|
def create_data_table(spaces_data): |
|
if not spaces_data: |
|
return pd.DataFrame() |
|
|
|
rows = [] |
|
for idx, space in enumerate(spaces_data, 1): |
|
space_id = space.get('id', '') |
|
if space_id in target_spaces: |
|
rows.append({ |
|
'Rank': idx, |
|
'Space ID': space_id, |
|
'Likes': space.get('likes', 'N/A'), |
|
'Title': space.get('title', 'N/A'), |
|
'URL': target_spaces[space_id] |
|
}) |
|
|
|
return pd.DataFrame(rows) |
|
|
|
def refresh_data(): |
|
spaces_data = get_trending_spaces() |
|
if spaces_data: |
|
plot = create_trend_visualization(spaces_data) |
|
info = create_space_info_html(spaces_data) |
|
df = create_data_table(spaces_data) |
|
return plot, info, df |
|
else: |
|
return create_error_plot(), "<div>API μΈμ¦μ΄ νμν©λλ€.</div>", pd.DataFrame() |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown(""" |
|
# π€ νκΉ
νμ΄μ€ 'νκ΅ λ¦¬λ보λ' |
|
μ€μκ°μΌλ‘ Hugging Faceμ Spacesμ Models μΈκΈ° μμλ₯Ό λΆμν©λλ€. μ κ· λ±λ‘ μμ²: [email protected] |
|
""") |
|
|
|
with gr.Tab("Spaces Trending"): |
|
trending_plot = gr.Plot() |
|
trending_info = gr.HTML() |
|
trending_df = gr.DataFrame() |
|
|
|
with gr.Tab("Models Trending"): |
|
models_plot = gr.Plot() |
|
models_info = gr.HTML() |
|
models_df = gr.DataFrame() |
|
|
|
refresh_btn = gr.Button("π Refresh Data", variant="primary") |
|
|
|
def refresh_all_data(): |
|
spaces_results = get_spaces_data("trending") |
|
models_results = get_models_data() |
|
return [*spaces_results, *models_results] |
|
|
|
refresh_btn.click( |
|
refresh_all_data, |
|
outputs=[ |
|
trending_plot, trending_info, trending_df, |
|
models_plot, models_info, models_df |
|
] |
|
) |
|
|
|
|
|
spaces_results = get_spaces_data("trending") |
|
models_results = get_models_data() |
|
|
|
trending_plot.value, trending_info.value, trending_df.value = spaces_results |
|
models_plot.value, models_info.value, models_df.value = models_results |
|
|
|
|
|
demo.launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
share=False |
|
) |