# src/populate.py import json import os import pandas as pd # 외부에서 정의된 함수를 import 해옵니다. from src.display.formatting import has_no_nan_values, make_clickable_model from src.display.utils import AutoEvalColumn, EvalQueueColumn from src.leaderboard.read_evals import get_raw_eval_results def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: raw_data = get_raw_eval_results(results_path, requests_path) all_data_json = [v.to_dict() for v in raw_data] df = pd.DataFrame.from_records(all_data_json) df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) df = df[cols].round(decimals=2) # "model" 컬럼에 make_clickable_model 적용 # 반드시 원본 모델명이 보존되도록 합니다 if "model" in df.columns: # 원본 모델명 임시 저장 df["original_model_name"] = df["model"].copy() # 하이퍼링크 적용 df["model"] = df["model"].apply(make_clickable_model) # 모든 벤치마크가 생산되지 않은 행을 필터링 df = df[has_no_nan_values(df, benchmark_cols)] return df def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: """평가 대기열에 대한 각 DataFrame을 생성합니다.""" entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] all_evals = [] for entry in entries: if ".json" in entry: file_path = os.path.join(save_path, entry) with open(file_path) as fp: data = json.load(fp) # 원본 모델명 저장 original_model = data.get("model", "") data[EvalQueueColumn.model.name] = make_clickable_model(original_model) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) elif ".md" not in entry: # 폴더인 경우: 파일 여부를 확인할 때 전체 경로를 사용 sub_entries = [ e for e in os.listdir(os.path.join(save_path, entry)) if os.path.isfile(os.path.join(save_path, entry, e)) and not e.startswith(".") ] for sub_entry in sub_entries: file_path = os.path.join(save_path, entry, sub_entry) with open(file_path) as fp: data = json.load(fp) original_model = data.get("model", "") data[EvalQueueColumn.model.name] = make_clickable_model(original_model) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] running_list = [e for e in all_evals if e["status"] == "RUNNING"] finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] df_pending = pd.DataFrame.from_records(pending_list, columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]