Update src/populate.py
Browse files- src/populate.py +29 -29
src/populate.py
CHANGED
|
@@ -1,68 +1,68 @@
|
|
| 1 |
# src/populate.py
|
| 2 |
-
|
| 3 |
import json
|
| 4 |
-
import os
|
| 5 |
-
|
| 6 |
import pandas as pd
|
| 7 |
|
| 8 |
-
# ์๋ ์๋ local `make_clickable_model` ์ ๊ฑฐํ๊ณ ,
|
| 9 |
# ์ธ๋ถ์์ ์ ์๋ ํจ์๋ฅผ import ํด์ต๋๋ค.
|
| 10 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
| 11 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
| 12 |
-
from src.leaderboard.read_evals import get_raw_eval_results
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
| 16 |
-
raw_data = get_raw_eval_results(results_path, requests_path)
|
| 17 |
-
all_data_json = [v.to_dict() for v in raw_data]
|
| 18 |
-
|
| 19 |
-
df = pd.DataFrame.from_records(all_data_json)
|
| 20 |
-
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 21 |
-
df = df[cols].round(decimals=2)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
# "model" ์ปฌ๋ผ์ make_clickable_model ์ ์ฉ
|
|
|
|
| 24 |
if "model" in df.columns:
|
|
|
|
|
|
|
|
|
|
| 25 |
df["model"] = df["model"].apply(make_clickable_model)
|
| 26 |
-
|
| 27 |
# ๋ชจ๋ ๋ฒค์น๋งํฌ๊ฐ ์์ฐ๋์ง ์์ ํ์ ํํฐ๋ง
|
| 28 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
| 29 |
return df
|
| 30 |
|
| 31 |
-
|
| 32 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
| 33 |
"""ํ๊ฐ ๋๊ธฐ์ด์ ๋ํ ๊ฐ DataFrame์ ์์ฑํฉ๋๋ค."""
|
| 34 |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
| 35 |
all_evals = []
|
| 36 |
-
|
| 37 |
for entry in entries:
|
| 38 |
if ".json" in entry:
|
| 39 |
file_path = os.path.join(save_path, entry)
|
| 40 |
with open(file_path) as fp:
|
| 41 |
data = json.load(fp)
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
elif ".md" not in entry:
|
| 48 |
# ํด๋์ธ ๊ฒฝ์ฐ: ํ์ผ ์ฌ๋ถ๋ฅผ ํ์ธํ ๋ ์ ์ฒด ๊ฒฝ๋ก๋ฅผ ์ฌ์ฉ
|
| 49 |
sub_entries = [
|
| 50 |
-
e for e in os.listdir(os.path.join(save_path, entry))
|
| 51 |
if os.path.isfile(os.path.join(save_path, entry, e)) and not e.startswith(".")
|
| 52 |
]
|
| 53 |
for sub_entry in sub_entries:
|
| 54 |
file_path = os.path.join(save_path, entry, sub_entry)
|
| 55 |
with open(file_path) as fp:
|
| 56 |
data = json.load(fp)
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
| 63 |
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
| 64 |
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
|
|
|
| 65 |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
| 66 |
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
| 67 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
| 68 |
-
|
|
|
|
|
|
| 1 |
# src/populate.py
|
|
|
|
| 2 |
import json
|
| 3 |
+
import os
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
|
|
|
|
| 6 |
# ์ธ๋ถ์์ ์ ์๋ ํจ์๋ฅผ import ํด์ต๋๋ค.
|
| 7 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
| 8 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
| 9 |
+
from src.leaderboard.read_evals import get_raw_eval_results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
| 12 |
+
raw_data = get_raw_eval_results(results_path, requests_path)
|
| 13 |
+
all_data_json = [v.to_dict() for v in raw_data]
|
| 14 |
+
df = pd.DataFrame.from_records(all_data_json)
|
| 15 |
+
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 16 |
+
df = df[cols].round(decimals=2)
|
| 17 |
+
|
| 18 |
# "model" ์ปฌ๋ผ์ make_clickable_model ์ ์ฉ
|
| 19 |
+
# ๋ฐ๋์ ์๋ณธ ๋ชจ๋ธ๋ช
์ด ๋ณด์กด๋๋๋ก ํฉ๋๋ค
|
| 20 |
if "model" in df.columns:
|
| 21 |
+
# ์๋ณธ ๋ชจ๋ธ๋ช
์์ ์ ์ฅ
|
| 22 |
+
df["original_model_name"] = df["model"].copy()
|
| 23 |
+
# ํ์ดํผ๋งํฌ ์ ์ฉ
|
| 24 |
df["model"] = df["model"].apply(make_clickable_model)
|
| 25 |
+
|
| 26 |
# ๋ชจ๋ ๋ฒค์น๋งํฌ๊ฐ ์์ฐ๋์ง ์์ ํ์ ํํฐ๋ง
|
| 27 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
| 28 |
return df
|
| 29 |
|
|
|
|
| 30 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
| 31 |
"""ํ๊ฐ ๋๊ธฐ์ด์ ๋ํ ๊ฐ DataFrame์ ์์ฑํฉ๋๋ค."""
|
| 32 |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
| 33 |
all_evals = []
|
| 34 |
+
|
| 35 |
for entry in entries:
|
| 36 |
if ".json" in entry:
|
| 37 |
file_path = os.path.join(save_path, entry)
|
| 38 |
with open(file_path) as fp:
|
| 39 |
data = json.load(fp)
|
| 40 |
+
# ์๋ณธ ๋ชจ๋ธ๋ช
์ ์ฅ
|
| 41 |
+
original_model = data.get("model", "")
|
| 42 |
+
data[EvalQueueColumn.model.name] = make_clickable_model(original_model)
|
| 43 |
+
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
| 44 |
+
all_evals.append(data)
|
| 45 |
elif ".md" not in entry:
|
| 46 |
# ํด๋์ธ ๊ฒฝ์ฐ: ํ์ผ ์ฌ๋ถ๋ฅผ ํ์ธํ ๋ ์ ์ฒด ๊ฒฝ๋ก๋ฅผ ์ฌ์ฉ
|
| 47 |
sub_entries = [
|
| 48 |
+
e for e in os.listdir(os.path.join(save_path, entry))
|
| 49 |
if os.path.isfile(os.path.join(save_path, entry, e)) and not e.startswith(".")
|
| 50 |
]
|
| 51 |
for sub_entry in sub_entries:
|
| 52 |
file_path = os.path.join(save_path, entry, sub_entry)
|
| 53 |
with open(file_path) as fp:
|
| 54 |
data = json.load(fp)
|
| 55 |
+
original_model = data.get("model", "")
|
| 56 |
+
data[EvalQueueColumn.model.name] = make_clickable_model(original_model)
|
| 57 |
+
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
| 58 |
+
all_evals.append(data)
|
| 59 |
+
|
| 60 |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
| 61 |
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
| 62 |
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
| 63 |
+
|
| 64 |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
| 65 |
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
| 66 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
| 67 |
+
|
| 68 |
+
return df_finished[cols], df_running[cols], df_pending[cols]
|