Update app.py
Browse files
app.py
CHANGED
@@ -1,264 +1,107 @@
|
|
1 |
-
#๋ชจ๋ธ๋ช
๊ณผ url ๋ณ๊ฒฝ: "src/display/formatting.py" ๊ทธ๋ฆฌ๊ณ src/leaderboard/read_evals.py
|
2 |
-
#ํ๊ฐ ํญ๋ชฉ๋ช
๋ณ๊ฒฝ: "src/about.py"
|
3 |
-
|
4 |
import gradio as gr
|
5 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
6 |
import pandas as pd
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
)
|
30 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
31 |
-
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
32 |
-
from src.submission.submit import add_new_eval
|
33 |
-
|
34 |
-
def debug_model_names(df, label="๋๋ฒ๊ทธ"):
|
35 |
-
"""
|
36 |
-
๋ฐ์ดํฐํ๋ ์์์ ๋ชจ๋ธ ์ด๋ฆ ๊ด๋ จ ์ด์ ๋๋ฒ๊น
ํ๊ธฐ ์ํ ํจ์
|
37 |
-
"""
|
38 |
-
print(f"===== {label} ๋๋ฒ๊น
=====")
|
39 |
-
if df is None or df.empty:
|
40 |
-
print("๋ฐ์ดํฐํ๋ ์์ด ๋น์ด์์ต๋๋ค.")
|
41 |
-
return
|
42 |
-
|
43 |
-
model_cols = [col for col in df.columns if 'model' in col.lower()]
|
44 |
-
if not model_cols:
|
45 |
-
print("๋ชจ๋ธ ๊ด๋ จ ์ด์ด ์์ต๋๋ค.")
|
46 |
-
return
|
47 |
-
|
48 |
-
for col in model_cols:
|
49 |
-
print(f"์ปฌ๋ผ: {col}")
|
50 |
-
print(df[col].head())
|
51 |
-
print("\n")
|
52 |
-
|
53 |
-
print("==================\n")
|
54 |
-
|
55 |
-
def restart_space():
|
56 |
-
API.restart_space(repo_id=REPO_ID)
|
57 |
-
|
58 |
-
### Space initialisation
|
59 |
-
try:
|
60 |
-
print(EVAL_REQUESTS_PATH)
|
61 |
-
snapshot_download(
|
62 |
-
repo_id=QUEUE_REPO,
|
63 |
-
local_dir=EVAL_REQUESTS_PATH,
|
64 |
-
repo_type="dataset",
|
65 |
-
tqdm_class=None,
|
66 |
-
etag_timeout=30,
|
67 |
-
token=TOKEN
|
68 |
-
)
|
69 |
-
except Exception:
|
70 |
-
restart_space()
|
71 |
-
try:
|
72 |
-
print(EVAL_RESULTS_PATH)
|
73 |
-
snapshot_download(
|
74 |
-
repo_id=RESULTS_REPO,
|
75 |
-
local_dir=EVAL_RESULTS_PATH,
|
76 |
-
repo_type="dataset",
|
77 |
-
tqdm_class=None,
|
78 |
-
etag_timeout=30,
|
79 |
-
token=TOKEN
|
80 |
-
)
|
81 |
-
except Exception:
|
82 |
-
restart_space()
|
83 |
-
|
84 |
-
|
85 |
-
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
86 |
-
# ๋๋ฒ๊น
์ ์ํ ์ฝ๋ (ํ์์ ์ฃผ์ ํด์ )
|
87 |
-
# debug_model_names(LEADERBOARD_DF, "Leaderboard ๋ฐ์ดํฐ")
|
88 |
-
|
89 |
-
# ๋ณํ ๋งคํ ์ ์
|
90 |
-
benchmark_mapping = {
|
91 |
-
"ANLI": "Korean Bar Exam (Lawyer)",
|
92 |
-
"LogiQA": "Senior Civil Service Examination(๊ตญ๊ฐ์ง 5๊ธ)"
|
93 |
}
|
94 |
|
95 |
-
#
|
96 |
-
|
97 |
-
if model_type_column in LEADERBOARD_DF.columns:
|
98 |
-
LEADERBOARD_DF[model_type_column] = LEADERBOARD_DF[model_type_column].apply(lambda s: benchmark_mapping.get(s, s))
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
pending_eval_queue_df,
|
104 |
-
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
105 |
-
# ๋๋ฒ๊น
์ ์ํ ์ฝ๋ (ํ์์ ์ฃผ์ ํด์ )
|
106 |
-
# debug_model_names(finished_eval_queue_df, "์๋ฃ๋ ํ๊ฐ ํ")
|
107 |
-
# debug_model_names(running_eval_queue_df, "์คํ ์ค์ธ ํ๊ฐ ํ")
|
108 |
-
# debug_model_names(pending_eval_queue_df, "๋๊ธฐ ์ค์ธ ํ๊ฐ ํ")
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
return Leaderboard(
|
114 |
-
value=dataframe,
|
115 |
-
datatype=[c.type for c in fields(AutoEvalColumn)],
|
116 |
-
select_columns=SelectColumns(
|
117 |
-
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
118 |
-
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
119 |
-
label="Select Columns to Display:",
|
120 |
-
),
|
121 |
-
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
122 |
-
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
123 |
-
filter_columns=[
|
124 |
-
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
125 |
-
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
126 |
-
ColumnFilter(
|
127 |
-
AutoEvalColumn.params.name,
|
128 |
-
type="slider",
|
129 |
-
min=0.01,
|
130 |
-
max=150,
|
131 |
-
label="Select the number of parameters (B)",
|
132 |
-
),
|
133 |
-
ColumnFilter(
|
134 |
-
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
135 |
-
),
|
136 |
-
],
|
137 |
-
bool_checkboxgroup_label="Hide models",
|
138 |
-
interactive=False,
|
139 |
-
)
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
"""
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
with gr.TabItem("๐ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
165 |
-
with gr.Column():
|
166 |
-
with gr.Row():
|
167 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
168 |
-
|
169 |
-
with gr.Column():
|
170 |
-
with gr.Accordion(
|
171 |
-
f"โ
Finished Evaluations ({len(finished_eval_queue_df)})",
|
172 |
-
open=False,
|
173 |
-
):
|
174 |
-
with gr.Row():
|
175 |
-
finished_eval_table = gr.components.Dataframe(
|
176 |
-
value=finished_eval_queue_df,
|
177 |
-
headers=EVAL_COLS,
|
178 |
-
datatype=EVAL_TYPES,
|
179 |
-
row_count=5,
|
180 |
-
)
|
181 |
-
with gr.Accordion(
|
182 |
-
f"๐ Running Evaluation Queue ({len(running_eval_queue_df)})",
|
183 |
-
open=False,
|
184 |
-
):
|
185 |
-
with gr.Row():
|
186 |
-
running_eval_table = gr.components.Dataframe(
|
187 |
-
value=running_eval_queue_df,
|
188 |
-
headers=EVAL_COLS,
|
189 |
-
datatype=EVAL_TYPES,
|
190 |
-
row_count=5,
|
191 |
-
)
|
192 |
-
|
193 |
-
with gr.Accordion(
|
194 |
-
f"โณ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
195 |
-
open=False,
|
196 |
-
):
|
197 |
-
with gr.Row():
|
198 |
-
pending_eval_table = gr.components.Dataframe(
|
199 |
-
value=pending_eval_queue_df,
|
200 |
-
headers=EVAL_COLS,
|
201 |
-
datatype=EVAL_TYPES,
|
202 |
-
row_count=5,
|
203 |
-
)
|
204 |
-
with gr.Row():
|
205 |
-
gr.Markdown("# โ๏ธโจ Submit your model here!", elem_classes="markdown-text")
|
206 |
-
|
207 |
-
with gr.Row():
|
208 |
-
with gr.Column():
|
209 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
210 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
211 |
-
model_type = gr.Dropdown(
|
212 |
-
choices=[get_model_type_display(t) for t in ModelType if t != ModelType.Unknown],
|
213 |
-
label="Model type",
|
214 |
-
multiselect=False,
|
215 |
-
value=None,
|
216 |
-
interactive=True,
|
217 |
-
)
|
218 |
-
|
219 |
-
with gr.Column():
|
220 |
-
precision = gr.Dropdown(
|
221 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
222 |
-
label="Precision",
|
223 |
-
multiselect=False,
|
224 |
-
value="float16",
|
225 |
-
interactive=True,
|
226 |
-
)
|
227 |
-
weight_type = gr.Dropdown(
|
228 |
-
choices=[i.value.name for i in WeightType],
|
229 |
-
label="Weights type",
|
230 |
-
multiselect=False,
|
231 |
-
value="Original",
|
232 |
-
interactive=True,
|
233 |
-
)
|
234 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
235 |
-
|
236 |
-
submit_button = gr.Button("Submit Eval")
|
237 |
-
submission_result = gr.Markdown()
|
238 |
-
submit_button.click(
|
239 |
-
add_new_eval,
|
240 |
-
[
|
241 |
-
model_name_textbox,
|
242 |
-
base_model_name_textbox,
|
243 |
-
revision_name_textbox,
|
244 |
-
precision,
|
245 |
-
weight_type,
|
246 |
-
model_type,
|
247 |
-
],
|
248 |
-
submission_result,
|
249 |
-
)
|
250 |
-
|
251 |
-
with gr.Row():
|
252 |
-
with gr.Accordion("๐ Citation", open=False):
|
253 |
-
citation_button = gr.Textbox(
|
254 |
-
value=CITATION_BUTTON_TEXT,
|
255 |
-
label=CITATION_BUTTON_LABEL,
|
256 |
-
lines=20,
|
257 |
-
elem_id="citation-button",
|
258 |
-
show_copy_button=True,
|
259 |
-
)
|
260 |
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# ๋ฐ์ดํฐ ์ ์ (ํ๋์ฝ๋ฉ)
|
6 |
+
data = {
|
7 |
+
"Company/Model": [
|
8 |
+
"Anthropic/Claude 3 Opus",
|
9 |
+
"OpenAI/GPT-4",
|
10 |
+
"Google/Gemini Ultra",
|
11 |
+
"Cohere/Command R+",
|
12 |
+
"Naver/HyperCLOVA X",
|
13 |
+
"Kakao/KoGPT"
|
14 |
+
],
|
15 |
+
"URL": [
|
16 |
+
"https://www.anthropic.com/claude",
|
17 |
+
"https://openai.com/gpt-4",
|
18 |
+
"https://deepmind.google/technologies/gemini/",
|
19 |
+
"https://cohere.com/models/command-r-plus",
|
20 |
+
"https://clova.ai/hyperclova",
|
21 |
+
"https://kogpt.ai/"
|
22 |
+
],
|
23 |
+
"Korean Bar Exam (๋ณํธ์ฌ)": [85, 82, 80, 75, 79, 77],
|
24 |
+
"Senior Civil Service Examination (๊ตญ๊ฐ์ง 5๊ธ)": [88, 84, 83, 76, 81, 78]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
}
|
26 |
|
27 |
+
# DataFrame ์์ฑ
|
28 |
+
df = pd.DataFrame(data)
|
|
|
|
|
29 |
|
30 |
+
# Average ์ ์ ๊ณ์ฐ
|
31 |
+
exam_columns = ["Korean Bar Exam (๋ณํธ์ฌ)", "Senior Civil Service Examination (๊ตญ๊ฐ์ง 5๊ธ)"]
|
32 |
+
df["Average"] = df[exam_columns].mean(axis=1).round(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
# ์ด ์์ ์ฌ๋ฐฐ์น (Company/Model, URL, Average, ๊ทธ ๋ค์ ๊ฐ ์ํ)
|
35 |
+
cols = ["Company/Model", "URL", "Average"] + exam_columns
|
36 |
+
df = df[cols]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
# HTML๋ก ๋ ๋๋งํ๊ธฐ ์ํ ํจ์ (URL์ ํด๋ฆญ ๊ฐ๋ฅํ ๋งํฌ๋ก ๋ณํ)
|
39 |
+
def format_df_as_html(df):
|
40 |
+
# DataFrame ๋ณต์ฌ๋ณธ ์์ฑ
|
41 |
+
display_df = df.copy()
|
42 |
+
|
43 |
+
# URL ์ด์ ํด๋ฆญ ๊ฐ๋ฅํ ๋งํฌ๋ก ๋ณํ
|
44 |
+
for i, url in enumerate(display_df["URL"]):
|
45 |
+
model_name = display_df.iloc[i]["Company/Model"]
|
46 |
+
display_df.at[i, "Company/Model"] = f'<a href="{url}" target="_blank">{model_name}</a>'
|
47 |
+
|
48 |
+
# URL ์ด ์ ๊ฑฐ (์ด๋ฏธ Company/Model์ ๋งํฌ๋ก ํตํฉ)
|
49 |
+
display_df = display_df.drop("URL", axis=1)
|
50 |
+
|
51 |
+
# ํ ์คํ์ผ ์ถ๊ฐ
|
52 |
+
styled_html = """
|
53 |
+
<style>
|
54 |
+
table {
|
55 |
+
width: 100%;
|
56 |
+
border-collapse: collapse;
|
57 |
+
font-family: Arial, sans-serif;
|
58 |
+
}
|
59 |
+
th {
|
60 |
+
background-color: #4CAF50;
|
61 |
+
color: white;
|
62 |
+
font-weight: bold;
|
63 |
+
text-align: left;
|
64 |
+
padding: 12px;
|
65 |
+
}
|
66 |
+
td {
|
67 |
+
padding: 10px;
|
68 |
+
border-bottom: 1px solid #ddd;
|
69 |
+
}
|
70 |
+
tr:nth-child(even) {
|
71 |
+
background-color: #f2f2f2;
|
72 |
+
}
|
73 |
+
tr:hover {
|
74 |
+
background-color: #ddd;
|
75 |
+
}
|
76 |
+
.header {
|
77 |
+
text-align: center;
|
78 |
+
font-size: 24px;
|
79 |
+
font-weight: bold;
|
80 |
+
margin-bottom: 20px;
|
81 |
+
color: #333;
|
82 |
+
}
|
83 |
+
</style>
|
84 |
+
<div class="header">Korean Exam Leaderboard</div>
|
85 |
"""
|
86 |
+
|
87 |
+
# DataFrame์ HTML๋ก ๋ณํํ๊ณ ์คํ์ผ ์ ์ฉ
|
88 |
+
html_table = display_df.to_html(index=False, escape=False)
|
89 |
+
return styled_html + html_table
|
90 |
+
|
91 |
+
# Gradio ์ธํฐํ์ด์ค
|
92 |
+
def show_leaderboard():
|
93 |
+
html_content = format_df_as_html(df)
|
94 |
+
return html_content
|
95 |
+
|
96 |
+
# ์ธํฐํ์ด์ค ์์ฑ
|
97 |
+
demo = gr.Interface(
|
98 |
+
fn=show_leaderboard,
|
99 |
+
inputs=None,
|
100 |
+
outputs=gr.HTML(),
|
101 |
+
title="Korean Exam Leaderboard",
|
102 |
+
description="์ฑ๋ฅ ๋น๊ต: ํ๊ตญ ๋ฒํ ๋ฐ ํ์ ๊ณ ์ ์ํ์์์ AI ๋ชจ๋ธ ์ ์"
|
103 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
# ์ฑ ์คํ
|
106 |
+
if __name__ == "__main__":
|
107 |
+
demo.launch()
|
|