|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
|
|
def dot_effect(input_image): |
|
""" |
|
Convert input image to dotted effect similar to the example |
|
|
|
Args: |
|
input_image (ndarray): Input image |
|
|
|
Returns: |
|
ndarray: Image with dotted effect |
|
""" |
|
|
|
gray_image = np.mean(input_image, axis=2) |
|
|
|
|
|
normalized = (gray_image - gray_image.min()) / (gray_image.max() - gray_image.min()) |
|
|
|
|
|
dot_size = 5 |
|
height, width = gray_image.shape |
|
dot_mask = np.zeros((height, width, 3), dtype=np.uint8) |
|
|
|
for y in range(0, height, dot_size): |
|
for x in range(0, width, dot_size): |
|
if normalized[y, x] > 0.3: |
|
radius = int(dot_size * normalized[y, x]) |
|
center_x, center_y = x + dot_size//2, y + dot_size//2 |
|
|
|
for dy in range(-radius, radius): |
|
for dx in range(-radius, radius): |
|
if dx*dx + dy*dy <= radius*radius: |
|
px, py = center_x + dx, center_y + dy |
|
if 0 <= px < width and 0 <= py < height: |
|
dot_mask[py, px] = [255, 255, 255] |
|
|
|
return dot_mask |
|
|
|
|
|
iface = gr.Interface( |
|
fn=dot_effect, |
|
inputs=gr.Image(type="numpy"), |
|
outputs=gr.Image(type="numpy"), |
|
title="ChatGPT Ad Maker", |
|
description="Transform images into dotted effect" |
|
) |
|
|
|
|
|
iface.launch() |
|
|