File size: 6,553 Bytes
6c31f83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import gradio as gr
import os
import requests
import json

def create_deepseek_interface():
    # Initialize chat history
    chat_history = []
    
    # Function to call the DeepSeek API
    def query_deepseek(message, history, api_key):
        if not api_key:
            return history, "Please provide your Fireworks AI API key"
        
        # Prepare the conversation history for the API
        messages = []
        for h in history:
            messages.append({"role": "user", "content": h[0]})
            messages.append({"role": "assistant", "content": h[1]})
        
        # Add the new user message
        messages.append({"role": "user", "content": message})
        
        # Prepare the API request
        url = "https://api.fireworks.ai/inference/v1/chat/completions"
        payload = {
            "model": "accounts/fireworks/models/deepseek-v3",
            "max_tokens": 16384,
            "top_p": 1,
            "top_k": 40,
            "presence_penalty": 0,
            "frequency_penalty": 0,
            "temperature": 0.6,
            "messages": messages
        }
        headers = {
            "Accept": "application/json",
            "Content-Type": "application/json",
            "Authorization": f"Bearer {api_key}"
        }
        
        try:
            # Make the API request
            response = requests.post(url, headers=headers, data=json.dumps(payload))
            response.raise_for_status()  # Raise exception for HTTP errors
            
            # Extract the response
            result = response.json()
            assistant_response = result.get("choices", [{}])[0].get("message", {}).get("content", "")
            
            # Update history with the new exchange
            history.append((message, assistant_response))
            return history, ""
        except requests.exceptions.RequestException as e:
            error_msg = f"API Error: {str(e)}"
            if response.status_code == 401:
                error_msg = "Authentication failed. Please check your API key."
            return history, error_msg
    
    # Create Gradio interface
    with gr.Blocks(theme="soft", fill_height=True) as demo:
        # Header Section
        gr.Markdown(
            """
            # ๐Ÿค– DeepSeek V3 Inference Interface
            ### Advanced AI Model Powered by Fireworks AI
            """
        )
        
        # State for error messages
        error_msg = gr.State("")
        
        # Main layout with two columns
        with gr.Row():
            # Sidebar with Model Information and API Key
            with gr.Column(scale=1):
                gr.Markdown(
                    """
                    ## ๐Ÿ”‘ Access Control
                    ### Inference Provider
                    This interface connects to the DeepSeek-V3 model, served by the Fireworks AI API.
                    
                    #### Authentication
                    - Enter your Fireworks AI API key below
                    - Secure API access with end-to-end encryption
                    """
                )
                
                # API Key input
                api_key = gr.Textbox(
                    label="Fireworks AI API Key",
                    placeholder="Enter your API key...",
                    type="password"
                )
                
                # Model Details Section
                gr.Markdown(
                    """
                    ### ๐Ÿ“Š Model Details
                    - **Model**: DeepSeek-V3
                    - **Provider**: Fireworks AI
                    - **Max Tokens**: 16,384
                    - **Temperature**: 0.6
                    - **Capabilities**: Advanced Language Understanding
                    """
                )
            
            # Main Content Area
            with gr.Column(scale=2):
                # Chat interface
                chatbot = gr.Chatbot(
                    height=500,
                    show_label=False,
                    container=True,
                    bubble=True,
                    avatar_images=("๐Ÿ‘ค", "๐Ÿค–")
                )
                
                # Error message display
                error_display = gr.Markdown(visible=False)
                
                # Input area
                with gr.Row():
                    msg = gr.Textbox(
                        label="Your Message",
                        placeholder="Type your prompt here...",
                        show_label=False,
                        scale=9
                    )
                    submit = gr.Button("Send", variant="primary", scale=1)
                
                # Buttons for clearing and examples
                with gr.Row():
                    clear = gr.ClearButton([msg, chatbot], value="๐Ÿงน Clear Conversation")
                    
                # Example queries
                gr.Examples(
                    examples=[
                        "Explain the differences between transformers and RNNs in deep learning.",
                        "Write a Python function to find prime numbers in a range.",
                        "Summarize the key concepts of reinforcement learning."
                    ],
                    inputs=msg
                )
        
        # Handle form submission
        def process_submission(message, history, api_key):
            if not message.strip():
                return history, error_display.update(visible=False)
            
            updated_history, error = query_deepseek(message, history.copy(), api_key)
            
            if error:
                return history, error_display.update(value=f"**Error:** {error}", visible=True)
            else:
                return updated_history, error_display.update(visible=False)
        
        # Connect the button to the function
        submit.click(
            process_submission,
            inputs=[msg, chatbot, api_key],
            outputs=[chatbot, error_display],
            postprocess=lambda _: ("", )  # Clear input box after sending
        )
        
        # Also allow pressing Enter to submit
        msg.submit(
            process_submission,
            inputs=[msg, chatbot, api_key],
            outputs=[chatbot, error_display],
            postprocess=lambda _: ("", )  # Clear input box after sending
        )
        
    return demo

# Launch the interface
if __name__ == "__main__":
    demo = create_deepseek_interface()
    demo.launch(debug=True)