from typing import cast from langflow.base.models.model import LCModelComponent from langflow.field_typing import LanguageModel from langflow.inputs import MessageTextInput from langflow.inputs.inputs import HandleInput from langflow.io import BoolInput, FileInput, FloatInput, IntInput, StrInput class ChatVertexAIComponent(LCModelComponent): display_name = "Vertex AI" description = "Generate text using Vertex AI LLMs." icon = "VertexAI" name = "VertexAiModel" inputs = [ *LCModelComponent._base_inputs, FileInput( name="credentials", display_name="Credentials", info="JSON credentials file. Leave empty to fallback to environment variables", file_types=["json"], ), MessageTextInput(name="model_name", display_name="Model Name", value="gemini-1.5-pro"), StrInput(name="project", display_name="Project", info="The project ID.", advanced=True), StrInput(name="location", display_name="Location", value="us-central1", advanced=True), IntInput(name="max_output_tokens", display_name="Max Output Tokens", advanced=True), IntInput(name="max_retries", display_name="Max Retries", value=1, advanced=True), FloatInput(name="temperature", value=0.0, display_name="Temperature"), IntInput(name="top_k", display_name="Top K", advanced=True), FloatInput(name="top_p", display_name="Top P", value=0.95, advanced=True), BoolInput(name="verbose", display_name="Verbose", value=False, advanced=True), HandleInput( name="output_parser", display_name="Output Parser", info="The parser to use to parse the output of the model", advanced=True, input_types=["OutputParser"], ), ] def build_model(self) -> LanguageModel: try: from langchain_google_vertexai import ChatVertexAI except ImportError as e: msg = "Please install the langchain-google-vertexai package to use the VertexAIEmbeddings component." raise ImportError(msg) from e location = self.location or None if self.credentials: from google.cloud import aiplatform from google.oauth2 import service_account credentials = service_account.Credentials.from_service_account_file(self.credentials) project = self.project or credentials.project_id # ChatVertexAI sometimes skip manual credentials initialization aiplatform.init( project=project, location=location, credentials=credentials, ) else: project = self.project or None credentials = None return cast( "LanguageModel", ChatVertexAI( credentials=credentials, location=location, project=project, max_output_tokens=self.max_output_tokens or None, max_retries=self.max_retries, model_name=self.model_name, temperature=self.temperature, top_k=self.top_k or None, top_p=self.top_p, verbose=self.verbose, ), )