from langchain_cohere import ChatCohere from pydantic.v1 import SecretStr from langflow.base.models.model import LCModelComponent from langflow.field_typing import LanguageModel from langflow.inputs.inputs import HandleInput from langflow.io import FloatInput, SecretStrInput class CohereComponent(LCModelComponent): display_name = "Cohere" description = "Generate text using Cohere LLMs." documentation = "https://python.langchain.com/docs/modules/model_io/models/llms/integrations/cohere" icon = "Cohere" name = "CohereModel" inputs = [ *LCModelComponent._base_inputs, SecretStrInput( name="cohere_api_key", display_name="Cohere API Key", info="The Cohere API Key to use for the Cohere model.", advanced=False, value="COHERE_API_KEY", ), FloatInput(name="temperature", display_name="Temperature", value=0.75), HandleInput( name="output_parser", display_name="Output Parser", info="The parser to use to parse the output of the model", advanced=True, input_types=["OutputParser"], ), ] def build_model(self) -> LanguageModel: # type: ignore[type-var] cohere_api_key = self.cohere_api_key temperature = self.temperature api_key = SecretStr(cohere_api_key).get_secret_value() if cohere_api_key else None return ChatCohere( temperature=temperature or 0.75, cohere_api_key=api_key, )