import shutil from pathlib import Path import pytest from langchain_core.messages import AIMessage, HumanMessage from langchain_core.prompts.chat import ChatPromptTemplate from langflow.schema.message import Message from langflow.utils.constants import MESSAGE_SENDER_AI, MESSAGE_SENDER_USER from platformdirs import user_cache_dir @pytest.fixture def langflow_cache_dir(tmp_path): """Create a temporary langflow cache directory.""" cache_dir = tmp_path / "langflow" cache_dir.mkdir(parents=True) return cache_dir @pytest.fixture def sample_image(langflow_cache_dir): """Create a sample image file for testing.""" # Create the test_flow directory in the cache flow_dir = langflow_cache_dir / "test_flow" flow_dir.mkdir(parents=True, exist_ok=True) # Create the image in the flow directory image_path = flow_dir / "test_image.png" # Create a small black 1x1 pixel PNG file import base64 image_content = base64.b64decode( "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAACklEQVR4nGMAAQAABQABDQottAAAAABJRU5ErkJggg==" ) image_path.write_bytes(image_content) # Use platformdirs to get the cache directory real_cache_dir = Path(user_cache_dir("langflow")) real_cache_dir.mkdir(parents=True, exist_ok=True) real_flow_dir = real_cache_dir / "test_flow" real_flow_dir.mkdir(parents=True, exist_ok=True) # Copy the image to the real cache location real_image_path = real_flow_dir / "test_image.png" shutil.copy2(str(image_path), str(real_image_path)) return image_path def test_message_prompt_serialization(): template = "Hello, {name}!" message = Message.from_template(template, name="Langflow") assert message.text == "Hello, Langflow!" prompt = message.load_lc_prompt() assert isinstance(prompt, ChatPromptTemplate) assert prompt.messages[0].content == "Hello, Langflow!" def test_message_from_human_text(): """Test creating a message from human text.""" text = "Hello, AI!" message = Message(text=text, sender=MESSAGE_SENDER_USER) lc_message = message.to_lc_message() assert isinstance(lc_message, HumanMessage) assert lc_message.content == text def test_message_from_ai_text(): """Test creating a message from AI text.""" text = "Hello, Human!" message = Message(text=text, sender=MESSAGE_SENDER_AI) lc_message = message.to_lc_message() assert isinstance(lc_message, AIMessage) assert lc_message.content == text def test_message_with_single_image(sample_image): """Test creating a message with text and an image.""" text = "Check out this image" # Format the file path as expected: "flow_id/filename" file_path = f"test_flow/{sample_image.name}" message = Message(text=text, sender=MESSAGE_SENDER_USER, files=[file_path]) lc_message = message.to_lc_message() assert isinstance(lc_message, HumanMessage) assert isinstance(lc_message.content, list) assert len(lc_message.content) == 2 # Check text content assert lc_message.content[0] == {"type": "text", "text": text} # Check image content assert lc_message.content[1]["type"] == "image_url" assert "url" in lc_message.content[1]["image_url"] assert lc_message.content[1]["image_url"]["url"].startswith("data:image/png;base64,") def test_message_with_multiple_images(sample_image, langflow_cache_dir): """Test creating a message with multiple images.""" # Create a second image in the cache directory flow_dir = langflow_cache_dir / "test_flow" second_image = flow_dir / "second_image.png" shutil.copy2(str(sample_image), str(second_image)) # Use platformdirs for the real cache location real_cache_dir = Path(user_cache_dir("langflow")) / "test_flow" real_cache_dir.mkdir(parents=True, exist_ok=True) real_second_image = real_cache_dir / "second_image.png" shutil.copy2(str(sample_image), str(real_second_image)) text = "Multiple images" message = Message( text=text, sender=MESSAGE_SENDER_USER, files=[f"test_flow/{sample_image.name}", f"test_flow/{second_image.name}"], ) lc_message = message.to_lc_message() assert isinstance(lc_message, HumanMessage) assert isinstance(lc_message.content, list) assert len(lc_message.content) == 3 # text + 2 images # Check text content assert lc_message.content[0] == {"type": "text", "text": text} # Check both images assert all( content["type"] == "image_url" and content["image_url"]["url"].startswith("data:image/png;base64,") for content in lc_message.content[1:] ) def test_message_with_invalid_image_path(): """Test handling of invalid image path.""" file_path = "test_flow/non_existent.png" message = Message(text="Invalid image", sender=MESSAGE_SENDER_USER, files=[file_path]) with pytest.raises(FileNotFoundError): message.to_lc_message() def test_message_without_sender(): """Test message creation without sender specification.""" # Create message without sender message = Message(text="Test message") # Verify the message was created but has no sender assert message.text == "Test message" assert message.sender is None def test_message_serialization(): """Test message serialization to dict.""" message = Message(text="Test message", sender=MESSAGE_SENDER_USER) serialized = message.model_dump() assert serialized["text"] == "Test message" assert serialized["sender"] == MESSAGE_SENDER_USER def test_message_to_lc_without_sender(): """Test converting a message without sender to langchain message.""" message = Message(text="Test message") # When no sender is specified, it defaults to HumanMessage lc_message = message.to_lc_message() assert isinstance(lc_message, HumanMessage) assert lc_message.content == "Test message" # Clean up the cache directory after all tests @pytest.fixture(autouse=True) def cleanup(): yield # Clean up the real cache directory after tests cache_dir = Path(user_cache_dir("langflow")) if cache_dir.exists(): shutil.rmtree(str(cache_dir))