from typing import TYPE_CHECKING, Literal import pytest from langflow.components.inputs import ChatInput if TYPE_CHECKING: from pydantic.fields import FieldInfo def test_create_input_schema(): from langflow.io.schema import create_input_schema schema = create_input_schema(ChatInput.inputs) assert schema.__name__ == "InputSchema" class TestCreateInputSchema: # Single input type is converted to list and processed correctly def test_single_input_type_conversion(self): from langflow.inputs.inputs import StrInput from langflow.io.schema import create_input_schema input_instance = StrInput(name="test_field") schema = create_input_schema([input_instance]) assert schema.__name__ == "InputSchema" assert "test_field" in schema.model_fields # Multiple input types are processed and included in the schema def test_multiple_input_types(self): from langflow.inputs.inputs import IntInput, StrInput from langflow.io.schema import create_input_schema inputs = [StrInput(name="str_field"), IntInput(name="int_field")] schema = create_input_schema(inputs) assert schema.__name__ == "InputSchema" assert "str_field" in schema.model_fields assert "int_field" in schema.model_fields # Fields are correctly created with appropriate types and attributes def test_fields_creation_with_correct_types_and_attributes(self): from langflow.inputs.inputs import StrInput from langflow.io.schema import create_input_schema input_instance = StrInput(name="test_field", info="Test Info", required=True) schema = create_input_schema([input_instance]) field_info = schema.model_fields["test_field"] assert field_info.description == "Test Info" assert field_info.is_required() is True # Schema model is created and returned successfully def test_schema_model_creation(self): from langflow.inputs.inputs import StrInput from langflow.io.schema import create_input_schema input_instance = StrInput(name="test_field") schema = create_input_schema([input_instance]) assert schema.__name__ == "InputSchema" # Default values are correctly assigned to fields def test_default_values_assignment(self): from langflow.inputs.inputs import StrInput from langflow.io.schema import create_input_schema input_instance = StrInput(name="test_field", value="default_value") schema = create_input_schema([input_instance]) field_info = schema.model_fields["test_field"] assert field_info.default == "default_value" # Empty list of inputs is handled without errors def test_empty_list_of_inputs(self): from langflow.io.schema import create_input_schema schema = create_input_schema([]) assert schema.__name__ == "InputSchema" # Input with missing optional attributes (e.g., display_name, info) is processed correctly def test_missing_optional_attributes(self): from langflow.inputs.inputs import StrInput from langflow.io.schema import create_input_schema input_instance = StrInput(name="test_field") schema = create_input_schema([input_instance]) field_info = schema.model_fields["test_field"] assert field_info.title == "Test Field" assert field_info.description == "" # Input with is_list attribute set to True is processed correctly def test_is_list_attribute_processing(self): from langflow.inputs.inputs import StrInput from langflow.io.schema import create_input_schema input_instance = StrInput(name="test_field", is_list=True) schema = create_input_schema([input_instance]) field_info: FieldInfo = schema.model_fields["test_field"] assert field_info.annotation == list[str] # Input with options attribute is processed correctly def test_options_attribute_processing(self): from langflow.inputs.inputs import DropdownInput from langflow.io.schema import create_input_schema input_instance = DropdownInput(name="test_field", options=["option1", "option2"]) schema = create_input_schema([input_instance]) field_info = schema.model_fields["test_field"] assert field_info.annotation == Literal["option1", "option2"] # Non-standard field types are handled correctly def test_non_standard_field_types_handling(self): from langflow.inputs.inputs import FileInput from langflow.io.schema import create_input_schema input_instance = FileInput(name="file_field") schema = create_input_schema([input_instance]) field_info = schema.model_fields["file_field"] assert field_info.annotation is str # Inputs with mixed required and optional fields are processed correctly def test_mixed_required_optional_fields_processing(self): from langflow.inputs.inputs import IntInput, StrInput from langflow.io.schema import create_input_schema inputs = [ StrInput(name="required_field", required=True), IntInput(name="optional_field", required=False), ] schema = create_input_schema(inputs) required_field_info = schema.model_fields["required_field"] optional_field_info = schema.model_fields["optional_field"] assert required_field_info.is_required() is True assert optional_field_info.is_required() is False # Inputs with complex nested structures are handled correctly def test_complex_nested_structures_handling(self): from langflow.inputs.inputs import NestedDictInput from langflow.io.schema import create_input_schema nested_input = NestedDictInput(name="nested_field", value={"key": "value"}) schema = create_input_schema([nested_input]) field_info = schema.model_fields["nested_field"] assert isinstance(field_info.default, dict) assert field_info.default["key"] == "value" # Creating a schema from a single input type def test_single_input_type_replica(self): from langflow.inputs.inputs import StrInput from langflow.io.schema import create_input_schema input_instance = StrInput(name="test_field") schema = create_input_schema([input_instance]) assert schema.__name__ == "InputSchema" assert "test_field" in schema.model_fields # Creating a schema from a list of input types def test_passing_input_type_directly(self): from langflow.inputs.inputs import IntInput, StrInput from langflow.io.schema import create_input_schema inputs = StrInput(name="str_field"), IntInput(name="int_field") with pytest.raises(TypeError): create_input_schema(inputs) # Handling input types with options correctly def test_options_handling(self): from langflow.inputs.inputs import DropdownInput from langflow.io.schema import create_input_schema input_instance = DropdownInput(name="test_field", options=["option1", "option2"]) schema = create_input_schema([input_instance]) field_info = schema.model_fields["test_field"] assert field_info.annotation == Literal["option1", "option2"] # Handling input types with is_list attribute correctly def test_is_list_handling(self): from langflow.inputs.inputs import StrInput from langflow.io.schema import create_input_schema input_instance = StrInput(name="test_field", is_list=True) schema = create_input_schema([input_instance]) field_info = schema.model_fields["test_field"] assert field_info.annotation == list[str] # Converting FieldTypes to corresponding Python types def test_field_types_conversion(self): from langflow.inputs.inputs import IntInput from langflow.io.schema import create_input_schema input_instance = IntInput(name="int_field") schema = create_input_schema([input_instance]) field_info = schema.model_fields["int_field"] assert field_info.annotation is int # Use 'is' for type comparison # Setting default values for non-required fields def test_default_values_for_non_required_fields(self): from langflow.inputs.inputs import StrInput from langflow.io.schema import create_input_schema input_instance = StrInput(name="test_field", value="default_value") schema = create_input_schema([input_instance]) field_info = schema.model_fields["test_field"] assert field_info.default == "default_value" # Handling input types with missing attributes def test_missing_attributes_handling(self): from langflow.inputs.inputs import StrInput from langflow.io.schema import create_input_schema input_instance = StrInput(name="test_field") schema = create_input_schema([input_instance]) field_info = schema.model_fields["test_field"] assert field_info.title == "Test Field" assert field_info.description == "" # Handling invalid field types # Handling input types with None as default value def test_none_default_value_handling(self): from langflow.inputs.inputs import StrInput from langflow.io.schema import create_input_schema input_instance = StrInput(name="test_field", value=None) schema = create_input_schema([input_instance]) field_info = schema.model_fields["test_field"] assert field_info.default is None # Handling input types with special characters in names def test_special_characters_in_names_handling(self): from langflow.inputs.inputs import StrInput from langflow.io.schema import create_input_schema input_instance = StrInput(name="test@field#name") schema = create_input_schema([input_instance]) assert "test@field#name" in schema.model_fields