from enum import Enum import httpx from langchain.tools import StructuredTool from langchain_core.tools import ToolException from loguru import logger from pydantic import BaseModel, Field from langflow.base.langchain_utilities.model import LCToolComponent from langflow.field_typing import Tool from langflow.inputs import BoolInput, DropdownInput, IntInput, MessageTextInput, SecretStrInput from langflow.schema import Data class TavilySearchDepth(Enum): BASIC = "basic" ADVANCED = "advanced" class TavilySearchTopic(Enum): GENERAL = "general" NEWS = "news" class TavilySearchSchema(BaseModel): query: str = Field(..., description="The search query you want to execute with Tavily.") search_depth: TavilySearchDepth = Field(TavilySearchDepth.BASIC, description="The depth of the search.") topic: TavilySearchTopic = Field(TavilySearchTopic.GENERAL, description="The category of the search.") max_results: int = Field(5, description="The maximum number of search results to return.") include_images: bool = Field(default=False, description="Include a list of query-related images in the response.") include_answer: bool = Field(default=False, description="Include a short answer to original query.") class TavilySearchToolComponent(LCToolComponent): display_name = "Tavily AI Search" description = """**Tavily AI** is a search engine optimized for LLMs and RAG, \ aimed at efficient, quick, and persistent search results. It can be used independently or as an agent tool. Note: Check 'Advanced' for all options. """ icon = "TavilyIcon" name = "TavilyAISearch" documentation = "https://docs.tavily.com/" inputs = [ SecretStrInput( name="api_key", display_name="Tavily API Key", required=True, info="Your Tavily API Key.", ), MessageTextInput( name="query", display_name="Search Query", info="The search query you want to execute with Tavily.", ), DropdownInput( name="search_depth", display_name="Search Depth", info="The depth of the search.", options=list(TavilySearchDepth), value=TavilySearchDepth.ADVANCED, advanced=True, ), DropdownInput( name="topic", display_name="Search Topic", info="The category of the search.", options=list(TavilySearchTopic), value=TavilySearchTopic.GENERAL, advanced=True, ), IntInput( name="max_results", display_name="Max Results", info="The maximum number of search results to return.", value=5, advanced=True, ), BoolInput( name="include_images", display_name="Include Images", info="Include a list of query-related images in the response.", value=True, advanced=True, ), BoolInput( name="include_answer", display_name="Include Answer", info="Include a short answer to original query.", value=True, advanced=True, ), ] def run_model(self) -> list[Data]: # Convert string values to enum instances with validation try: search_depth_enum = ( self.search_depth if isinstance(self.search_depth, TavilySearchDepth) else TavilySearchDepth(str(self.search_depth).lower()) ) except ValueError as e: error_message = f"Invalid search depth value: {e!s}" self.status = error_message return [Data(data={"error": error_message})] try: topic_enum = ( self.topic if isinstance(self.topic, TavilySearchTopic) else TavilySearchTopic(str(self.topic).lower()) ) except ValueError as e: error_message = f"Invalid topic value: {e!s}" self.status = error_message return [Data(data={"error": error_message})] return self._tavily_search( self.query, search_depth=search_depth_enum, topic=topic_enum, max_results=self.max_results, include_images=self.include_images, include_answer=self.include_answer, ) def build_tool(self) -> Tool: return StructuredTool.from_function( name="tavily_search", description="Perform a web search using the Tavily API.", func=self._tavily_search, args_schema=TavilySearchSchema, ) def _tavily_search( self, query: str, *, search_depth: TavilySearchDepth = TavilySearchDepth.BASIC, topic: TavilySearchTopic = TavilySearchTopic.GENERAL, max_results: int = 5, include_images: bool = False, include_answer: bool = False, ) -> list[Data]: # Validate enum values if not isinstance(search_depth, TavilySearchDepth): msg = f"Invalid search_depth value: {search_depth}" raise TypeError(msg) if not isinstance(topic, TavilySearchTopic): msg = f"Invalid topic value: {topic}" raise TypeError(msg) try: url = "https://api.tavily.com/search" headers = { "content-type": "application/json", "accept": "application/json", } payload = { "api_key": self.api_key, "query": query, "search_depth": search_depth.value, "topic": topic.value, "max_results": max_results, "include_images": include_images, "include_answer": include_answer, } with httpx.Client() as client: response = client.post(url, json=payload, headers=headers) response.raise_for_status() search_results = response.json() data_results = [ Data( data={ "title": result.get("title"), "url": result.get("url"), "content": result.get("content"), "score": result.get("score"), } ) for result in search_results.get("results", []) ] if include_answer and search_results.get("answer"): data_results.insert(0, Data(data={"answer": search_results["answer"]})) if include_images and search_results.get("images"): data_results.append(Data(data={"images": search_results["images"]})) self.status = data_results # type: ignore[assignment] except httpx.HTTPStatusError as e: error_message = f"HTTP error: {e.response.status_code} - {e.response.text}" logger.debug(error_message) self.status = error_message raise ToolException(error_message) from e except Exception as e: error_message = f"Unexpected error: {e}" logger.opt(exception=True).debug("Error running Tavily Search") self.status = error_message raise ToolException(error_message) from e return data_results