from langflow.base.models.aws_constants import AWS_REGIONS, AWS_MODEL_IDs from langflow.base.models.model import LCModelComponent from langflow.field_typing import LanguageModel from langflow.inputs import MessageTextInput, SecretStrInput from langflow.inputs.inputs import HandleInput from langflow.io import DictInput, DropdownInput class AmazonBedrockComponent(LCModelComponent): display_name: str = "Amazon Bedrock" description: str = "Generate text using Amazon Bedrock LLMs." icon = "Amazon" name = "AmazonBedrockModel" inputs = [ *LCModelComponent._base_inputs, DropdownInput( name="model_id", display_name="Model ID", options=AWS_MODEL_IDs, value="anthropic.claude-3-haiku-20240307-v1:0", info="List of available model IDs to choose from.", ), SecretStrInput( name="aws_access_key_id", display_name="AWS Access Key ID", info="The access key for your AWS account." "Usually set in Python code as the environment variable 'AWS_ACCESS_KEY_ID'.", value="AWS_ACCESS_KEY_ID", ), SecretStrInput( name="aws_secret_access_key", display_name="AWS Secret Access Key", info="The secret key for your AWS account. " "Usually set in Python code as the environment variable 'AWS_SECRET_ACCESS_KEY'.", value="AWS_SECRET_ACCESS_KEY", ), SecretStrInput( name="aws_session_token", display_name="AWS Session Token", advanced=False, info="The session key for your AWS account. " "Only needed for temporary credentials. " "Usually set in Python code as the environment variable 'AWS_SESSION_TOKEN'.", load_from_db=False, ), SecretStrInput( name="credentials_profile_name", display_name="Credentials Profile Name", advanced=True, info="The name of the profile to use from your " "~/.aws/credentials file. " "If not provided, the default profile will be used.", load_from_db=False, ), DropdownInput( name="region_name", display_name="Region Name", value="us-east-1", options=AWS_REGIONS, info="The AWS region where your Bedrock resources are located.", ), DictInput( name="model_kwargs", display_name="Model Kwargs", advanced=True, is_list=True, info="Additional keyword arguments to pass to the model.", ), MessageTextInput( name="endpoint_url", display_name="Endpoint URL", advanced=True, info="The URL of the Bedrock endpoint to use.", ), HandleInput( name="output_parser", display_name="Output Parser", info="The parser to use to parse the output of the model", advanced=True, input_types=["OutputParser"], ), ] def build_model(self) -> LanguageModel: # type: ignore[type-var] try: from langchain_aws import ChatBedrock except ImportError as e: msg = "langchain_aws is not installed. Please install it with `pip install langchain_aws`." raise ImportError(msg) from e try: import boto3 except ImportError as e: msg = "boto3 is not installed. Please install it with `pip install boto3`." raise ImportError(msg) from e if self.aws_access_key_id or self.aws_secret_access_key: try: session = boto3.Session( aws_access_key_id=self.aws_access_key_id, aws_secret_access_key=self.aws_secret_access_key, aws_session_token=self.aws_session_token, ) except Exception as e: msg = "Could not create a boto3 session." raise ValueError(msg) from e elif self.credentials_profile_name: session = boto3.Session(profile_name=self.credentials_profile_name) else: session = boto3.Session() client_params = {} if self.endpoint_url: client_params["endpoint_url"] = self.endpoint_url if self.region_name: client_params["region_name"] = self.region_name boto3_client = session.client("bedrock-runtime", **client_params) try: output = ChatBedrock( client=boto3_client, model_id=self.model_id, region_name=self.region_name, model_kwargs=self.model_kwargs, endpoint_url=self.endpoint_url, streaming=self.stream, ) except Exception as e: msg = "Could not connect to AmazonBedrock API." raise ValueError(msg) from e return output