import os from astrapy.admin import parse_api_endpoint from langflow.base.memory.model import LCChatMemoryComponent from langflow.field_typing import BaseChatMessageHistory from langflow.inputs import MessageTextInput, SecretStrInput, StrInput class AstraDBChatMemory(LCChatMemoryComponent): display_name = "Astra DB Chat Memory" description = "Retrieves and store chat messages from Astra DB." name = "AstraDBChatMemory" icon: str = "AstraDB" inputs = [ SecretStrInput( name="token", display_name="Astra DB Application Token", info="Authentication token for accessing Astra DB.", value="ASTRA_DB_APPLICATION_TOKEN", required=True, advanced=os.getenv("ASTRA_ENHANCED", "false").lower() == "true", ), SecretStrInput( name="api_endpoint", display_name="API Endpoint", info="API endpoint URL for the Astra DB service.", value="ASTRA_DB_API_ENDPOINT", required=True, ), StrInput( name="collection_name", display_name="Collection Name", info="The name of the collection within Astra DB where the vectors will be stored.", required=True, ), StrInput( name="namespace", display_name="Namespace", info="Optional namespace within Astra DB to use for the collection.", advanced=True, ), MessageTextInput( name="session_id", display_name="Session ID", info="The session ID of the chat. If empty, the current session ID parameter will be used.", advanced=True, ), ] def build_message_history(self) -> BaseChatMessageHistory: try: from langchain_astradb.chat_message_histories import AstraDBChatMessageHistory except ImportError as e: msg = ( "Could not import langchain Astra DB integration package. " "Please install it with `pip install langchain-astradb`." ) raise ImportError(msg) from e return AstraDBChatMessageHistory( session_id=self.session_id, collection_name=self.collection_name, token=self.token, api_endpoint=self.api_endpoint, namespace=self.namespace or None, environment=parse_api_endpoint(self.api_endpoint).environment, )