agent-flow / src /backend /tests /unit /test_telemetry.py
Tai Truong
fix readme
d202ada
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
import pytest
from langflow.services.telemetry.opentelemetry import OpenTelemetry
fixed_labels = {"flow_id": "this_flow_id", "service": "this", "user": "that"}
@pytest.fixture
def opentelemetry_instance():
return OpenTelemetry()
def test_init(opentelemetry_instance):
assert isinstance(opentelemetry_instance, OpenTelemetry)
assert len(opentelemetry_instance._metrics) > 1
assert len(opentelemetry_instance._metrics) == len(opentelemetry_instance._metrics_registry) == 2
assert "file_uploads" in opentelemetry_instance._metrics
def test_gauge(opentelemetry_instance):
opentelemetry_instance.update_gauge("file_uploads", 1024, fixed_labels)
def test_gauge_with_counter_method(opentelemetry_instance):
with pytest.raises(TypeError, match="Metric 'file_uploads' is not a counter"):
opentelemetry_instance.increment_counter(metric_name="file_uploads", value=1, labels=fixed_labels)
def test_gauge_with_historgram_method(opentelemetry_instance):
with pytest.raises(TypeError, match="Metric 'file_uploads' is not a histogram"):
opentelemetry_instance.observe_histogram("file_uploads", 1, fixed_labels)
def test_gauge_with_up_down_counter_method(opentelemetry_instance):
with pytest.raises(TypeError, match="Metric 'file_uploads' is not an up down counter"):
opentelemetry_instance.up_down_counter("file_uploads", 1, labels=fixed_labels)
def test_increment_counter(opentelemetry_instance):
opentelemetry_instance.increment_counter(metric_name="num_files_uploaded", value=5, labels=fixed_labels)
def test_increment_counter_empty_label(opentelemetry_instance):
with pytest.raises(ValueError, match="Labels must be provided for the metric"):
opentelemetry_instance.increment_counter(metric_name="num_files_uploaded", value=5, labels={})
def test_increment_counter_missing_mandatory_label(opentelemetry_instance):
with pytest.raises(ValueError, match="Missing required labels: {'flow_id'}"):
opentelemetry_instance.increment_counter(metric_name="num_files_uploaded", value=5, labels={"service": "one"})
def test_increment_counter_unregisted_metric(opentelemetry_instance):
with pytest.raises(ValueError, match="Metric 'num_files_uploaded_1' is not registered"):
opentelemetry_instance.increment_counter(metric_name="num_files_uploaded_1", value=5, labels=fixed_labels)
def test_opentelementry_singleton(opentelemetry_instance):
opentelemetry_instance_2 = OpenTelemetry()
assert opentelemetry_instance is opentelemetry_instance_2
opentelemetry_instance_3 = OpenTelemetry(prometheus_enabled=False)
assert opentelemetry_instance is opentelemetry_instance_3
assert opentelemetry_instance.prometheus_enabled == opentelemetry_instance_3.prometheus_enabled
def test_missing_labels(opentelemetry_instance):
with pytest.raises(ValueError, match="Labels must be provided for the metric"):
opentelemetry_instance.increment_counter(metric_name="num_files_uploaded", labels=None, value=1.0)
with pytest.raises(ValueError, match="Labels must be provided for the metric"):
opentelemetry_instance.up_down_counter("num_files_uploaded", 1, None)
with pytest.raises(ValueError, match="Labels must be provided for the metric"):
opentelemetry_instance.update_gauge(metric_name="num_files_uploaded", value=1.0, labels={})
with pytest.raises(ValueError, match="Labels must be provided for the metric"):
opentelemetry_instance.observe_histogram("num_files_uploaded", 1, {})
def test_multithreaded_singleton():
def create_instance():
return OpenTelemetry()
# Create instances in multiple threads
with ThreadPoolExecutor(max_workers=10) as executor:
futures = [executor.submit(create_instance) for _ in range(100)]
instances = [future.result() for future in as_completed(futures)]
# Check that all instances are the same
first_instance = instances[0]
for instance in instances[1:]:
assert instance is first_instance
def test_multithreaded_singleton_race_condition():
# This test simulates a potential race condition
start_event = threading.Event()
def create_instance():
start_event.wait() # Wait for all threads to be ready
return OpenTelemetry()
# Create instances in multiple threads, all starting at the same time
with ThreadPoolExecutor(max_workers=100) as executor:
futures = [executor.submit(create_instance) for _ in range(100)]
start_event.set() # Start all threads simultaneously
instances = [future.result() for future in as_completed(futures)]
# Check that all instances are the same
first_instance = instances[0]
for instance in instances[1:]:
assert instance is first_instance