Spaces:
Running
Running
{ | |
"data": { | |
"edges": [ | |
{ | |
"animated": false, | |
"className": "", | |
"data": { | |
"sourceHandle": { | |
"dataType": "OpenAIModel", | |
"id": "OpenAIModel-Rc3MO", | |
"name": "text_output", | |
"output_types": [ | |
"Message" | |
] | |
}, | |
"targetHandle": { | |
"fieldName": "previous_response", | |
"id": "Prompt-u7GZR", | |
"inputTypes": [ | |
"Message", | |
"Text" | |
], | |
"type": "str" | |
} | |
}, | |
"id": "reactflow__edge-OpenAIModel-Rc3MO{œdataTypeœ:œOpenAIModelœ,œidœ:œOpenAIModel-Rc3MOœ,œnameœ:œtext_outputœ,œoutput_typesœ:[œMessageœ]}-Prompt-u7GZR{œfieldNameœ:œprevious_responseœ,œidœ:œPrompt-u7GZRœ,œinputTypesœ:[œMessageœ,œTextœ],œtypeœ:œstrœ}", | |
"selected": false, | |
"source": "OpenAIModel-Rc3MO", | |
"sourceHandle": "{œdataTypeœ: œOpenAIModelœ, œidœ: œOpenAIModel-Rc3MOœ, œnameœ: œtext_outputœ, œoutput_typesœ: [œMessageœ]}", | |
"target": "Prompt-u7GZR", | |
"targetHandle": "{œfieldNameœ: œprevious_responseœ, œidœ: œPrompt-u7GZRœ, œinputTypesœ: [œMessageœ, œTextœ], œtypeœ: œstrœ}" | |
}, | |
{ | |
"animated": false, | |
"className": "", | |
"data": { | |
"sourceHandle": { | |
"dataType": "Prompt", | |
"id": "Prompt-yDDjW", | |
"name": "prompt", | |
"output_types": [ | |
"Message" | |
] | |
}, | |
"targetHandle": { | |
"fieldName": "input_value", | |
"id": "OpenAIModel-zhgF5", | |
"inputTypes": [ | |
"Message" | |
], | |
"type": "str" | |
} | |
}, | |
"id": "reactflow__edge-Prompt-yDDjW{œdataTypeœ:œPromptœ,œidœ:œPrompt-yDDjWœ,œnameœ:œpromptœ,œoutput_typesœ:[œMessageœ]}-OpenAIModel-zhgF5{œfieldNameœ:œinput_valueœ,œidœ:œOpenAIModel-zhgF5œ,œinputTypesœ:[œMessageœ],œtypeœ:œstrœ}", | |
"selected": false, | |
"source": "Prompt-yDDjW", | |
"sourceHandle": "{œdataTypeœ: œPromptœ, œidœ: œPrompt-yDDjWœ, œnameœ: œpromptœ, œoutput_typesœ: [œMessageœ]}", | |
"target": "OpenAIModel-zhgF5", | |
"targetHandle": "{œfieldNameœ: œinput_valueœ, œidœ: œOpenAIModel-zhgF5œ, œinputTypesœ: [œMessageœ], œtypeœ: œstrœ}" | |
}, | |
{ | |
"animated": false, | |
"className": "", | |
"data": { | |
"sourceHandle": { | |
"dataType": "ChatInput", | |
"id": "ChatInput-Mzp4f", | |
"name": "message", | |
"output_types": [ | |
"Message" | |
] | |
}, | |
"targetHandle": { | |
"fieldName": "input_value", | |
"id": "Prompt-yDDjW", | |
"inputTypes": [ | |
"Message", | |
"Text" | |
], | |
"type": "str" | |
} | |
}, | |
"id": "reactflow__edge-ChatInput-Mzp4f{œdataTypeœ:œChatInputœ,œidœ:œChatInput-Mzp4fœ,œnameœ:œmessageœ,œoutput_typesœ:[œMessageœ]}-Prompt-yDDjW{œfieldNameœ:œinput_valueœ,œidœ:œPrompt-yDDjWœ,œinputTypesœ:[œMessageœ,œTextœ],œtypeœ:œstrœ}", | |
"selected": false, | |
"source": "ChatInput-Mzp4f", | |
"sourceHandle": "{œdataTypeœ: œChatInputœ, œidœ: œChatInput-Mzp4fœ, œnameœ: œmessageœ, œoutput_typesœ: [œMessageœ]}", | |
"target": "Prompt-yDDjW", | |
"targetHandle": "{œfieldNameœ: œinput_valueœ, œidœ: œPrompt-yDDjWœ, œinputTypesœ: [œMessageœ, œTextœ], œtypeœ: œstrœ}" | |
}, | |
{ | |
"animated": false, | |
"className": "", | |
"data": { | |
"sourceHandle": { | |
"dataType": "OpenAIModel", | |
"id": "OpenAIModel-zhgF5", | |
"name": "text_output", | |
"output_types": [ | |
"Message" | |
] | |
}, | |
"targetHandle": { | |
"fieldName": "input_value", | |
"id": "ChatOutput-mWv8X", | |
"inputTypes": [ | |
"Message" | |
], | |
"type": "str" | |
} | |
}, | |
"id": "reactflow__edge-OpenAIModel-zhgF5{œdataTypeœ:œOpenAIModelœ,œidœ:œOpenAIModel-zhgF5œ,œnameœ:œtext_outputœ,œoutput_typesœ:[œMessageœ]}-ChatOutput-mWv8X{œfieldNameœ:œinput_valueœ,œidœ:œChatOutput-mWv8Xœ,œinputTypesœ:[œMessageœ],œtypeœ:œstrœ}", | |
"selected": false, | |
"source": "OpenAIModel-zhgF5", | |
"sourceHandle": "{œdataTypeœ: œOpenAIModelœ, œidœ: œOpenAIModel-zhgF5œ, œnameœ: œtext_outputœ, œoutput_typesœ: [œMessageœ]}", | |
"target": "ChatOutput-mWv8X", | |
"targetHandle": "{œfieldNameœ: œinput_valueœ, œidœ: œChatOutput-mWv8Xœ, œinputTypesœ: [œMessageœ], œtypeœ: œstrœ}" | |
}, | |
{ | |
"animated": false, | |
"className": "", | |
"data": { | |
"sourceHandle": { | |
"dataType": "TavilyAISearch", | |
"id": "TavilyAISearch-rI4aD", | |
"name": "api_build_tool", | |
"output_types": [ | |
"Tool" | |
] | |
}, | |
"targetHandle": { | |
"fieldName": "tools", | |
"id": "Agent-9E8IU", | |
"inputTypes": [ | |
"Tool", | |
"BaseTool", | |
"StructuredTool" | |
], | |
"type": "other" | |
} | |
}, | |
"id": "reactflow__edge-TavilyAISearch-rI4aD{œdataTypeœ:œTavilyAISearchœ,œidœ:œTavilyAISearch-rI4aDœ,œnameœ:œapi_build_toolœ,œoutput_typesœ:[œToolœ]}-Agent-9E8IU{œfieldNameœ:œtoolsœ,œidœ:œAgent-9E8IUœ,œinputTypesœ:[œToolœ,œBaseToolœ,œStructuredToolœ],œtypeœ:œotherœ}", | |
"selected": false, | |
"source": "TavilyAISearch-rI4aD", | |
"sourceHandle": "{œdataTypeœ: œTavilyAISearchœ, œidœ: œTavilyAISearch-rI4aDœ, œnameœ: œapi_build_toolœ, œoutput_typesœ: [œToolœ]}", | |
"target": "Agent-9E8IU", | |
"targetHandle": "{œfieldNameœ: œtoolsœ, œidœ: œAgent-9E8IUœ, œinputTypesœ: [œToolœ, œBaseToolœ, œStructuredToolœ], œtypeœ: œotherœ}" | |
}, | |
{ | |
"animated": false, | |
"className": "", | |
"data": { | |
"sourceHandle": { | |
"dataType": "Prompt", | |
"id": "Prompt-u7GZR", | |
"name": "prompt", | |
"output_types": [ | |
"Message" | |
] | |
}, | |
"targetHandle": { | |
"fieldName": "input_value", | |
"id": "Agent-9E8IU", | |
"inputTypes": [ | |
"Message" | |
], | |
"type": "str" | |
} | |
}, | |
"id": "reactflow__edge-Prompt-u7GZR{œdataTypeœ:œPromptœ,œidœ:œPrompt-u7GZRœ,œnameœ:œpromptœ,œoutput_typesœ:[œMessageœ]}-Agent-9E8IU{œfieldNameœ:œinput_valueœ,œidœ:œAgent-9E8IUœ,œinputTypesœ:[œMessageœ],œtypeœ:œstrœ}", | |
"selected": false, | |
"source": "Prompt-u7GZR", | |
"sourceHandle": "{œdataTypeœ: œPromptœ, œidœ: œPrompt-u7GZRœ, œnameœ: œpromptœ, œoutput_typesœ: [œMessageœ]}", | |
"target": "Agent-9E8IU", | |
"targetHandle": "{œfieldNameœ: œinput_valueœ, œidœ: œAgent-9E8IUœ, œinputTypesœ: [œMessageœ], œtypeœ: œstrœ}" | |
}, | |
{ | |
"animated": false, | |
"className": "", | |
"data": { | |
"sourceHandle": { | |
"dataType": "Agent", | |
"id": "Agent-9E8IU", | |
"name": "response", | |
"output_types": [ | |
"Message" | |
] | |
}, | |
"targetHandle": { | |
"fieldName": "search_results", | |
"id": "Prompt-yDDjW", | |
"inputTypes": [ | |
"Message", | |
"Text" | |
], | |
"type": "str" | |
} | |
}, | |
"id": "reactflow__edge-Agent-9E8IU{œdataTypeœ:œAgentœ,œidœ:œAgent-9E8IUœ,œnameœ:œresponseœ,œoutput_typesœ:[œMessageœ]}-Prompt-yDDjW{œfieldNameœ:œsearch_resultsœ,œidœ:œPrompt-yDDjWœ,œinputTypesœ:[œMessageœ,œTextœ],œtypeœ:œstrœ}", | |
"selected": false, | |
"source": "Agent-9E8IU", | |
"sourceHandle": "{œdataTypeœ: œAgentœ, œidœ: œAgent-9E8IUœ, œnameœ: œresponseœ, œoutput_typesœ: [œMessageœ]}", | |
"target": "Prompt-yDDjW", | |
"targetHandle": "{œfieldNameœ: œsearch_resultsœ, œidœ: œPrompt-yDDjWœ, œinputTypesœ: [œMessageœ, œTextœ], œtypeœ: œstrœ}" | |
}, | |
{ | |
"animated": false, | |
"className": "", | |
"data": { | |
"sourceHandle": { | |
"dataType": "Prompt", | |
"id": "Prompt-T4lL6", | |
"name": "prompt", | |
"output_types": [ | |
"Message" | |
] | |
}, | |
"targetHandle": { | |
"fieldName": "system_message", | |
"id": "OpenAIModel-Rc3MO", | |
"inputTypes": [ | |
"Message" | |
], | |
"type": "str" | |
} | |
}, | |
"id": "reactflow__edge-Prompt-T4lL6{œdataTypeœ:œPromptœ,œidœ:œPrompt-T4lL6œ,œnameœ:œpromptœ,œoutput_typesœ:[œMessageœ]}-OpenAIModel-Rc3MO{œfieldNameœ:œsystem_messageœ,œidœ:œOpenAIModel-Rc3MOœ,œinputTypesœ:[œMessageœ],œtypeœ:œstrœ}", | |
"source": "Prompt-T4lL6", | |
"sourceHandle": "{œdataTypeœ: œPromptœ, œidœ: œPrompt-T4lL6œ, œnameœ: œpromptœ, œoutput_typesœ: [œMessageœ]}", | |
"target": "OpenAIModel-Rc3MO", | |
"targetHandle": "{œfieldNameœ: œsystem_messageœ, œidœ: œOpenAIModel-Rc3MOœ, œinputTypesœ: [œMessageœ], œtypeœ: œstrœ}" | |
}, | |
{ | |
"animated": false, | |
"className": "", | |
"data": { | |
"sourceHandle": { | |
"dataType": "ChatInput", | |
"id": "ChatInput-Mzp4f", | |
"name": "message", | |
"output_types": [ | |
"Message" | |
] | |
}, | |
"targetHandle": { | |
"fieldName": "input_value", | |
"id": "OpenAIModel-Rc3MO", | |
"inputTypes": [ | |
"Message" | |
], | |
"type": "str" | |
} | |
}, | |
"id": "reactflow__edge-ChatInput-Mzp4f{œdataTypeœ:œChatInputœ,œidœ:œChatInput-Mzp4fœ,œnameœ:œmessageœ,œoutput_typesœ:[œMessageœ]}-OpenAIModel-Rc3MO{œfieldNameœ:œinput_valueœ,œidœ:œOpenAIModel-Rc3MOœ,œinputTypesœ:[œMessageœ],œtypeœ:œstrœ}", | |
"source": "ChatInput-Mzp4f", | |
"sourceHandle": "{œdataTypeœ: œChatInputœ, œidœ: œChatInput-Mzp4fœ, œnameœ: œmessageœ, œoutput_typesœ: [œMessageœ]}", | |
"target": "OpenAIModel-Rc3MO", | |
"targetHandle": "{œfieldNameœ: œinput_valueœ, œidœ: œOpenAIModel-Rc3MOœ, œinputTypesœ: [œMessageœ], œtypeœ: œstrœ}" | |
}, | |
{ | |
"animated": false, | |
"className": "", | |
"data": { | |
"sourceHandle": { | |
"dataType": "Prompt", | |
"id": "Prompt-f4xQ5", | |
"name": "prompt", | |
"output_types": [ | |
"Message" | |
] | |
}, | |
"targetHandle": { | |
"fieldName": "system_message", | |
"id": "OpenAIModel-zhgF5", | |
"inputTypes": [ | |
"Message" | |
], | |
"type": "str" | |
} | |
}, | |
"id": "reactflow__edge-Prompt-f4xQ5{œdataTypeœ:œPromptœ,œidœ:œPrompt-f4xQ5œ,œnameœ:œpromptœ,œoutput_typesœ:[œMessageœ]}-OpenAIModel-zhgF5{œfieldNameœ:œsystem_messageœ,œidœ:œOpenAIModel-zhgF5œ,œinputTypesœ:[œMessageœ],œtypeœ:œstrœ}", | |
"source": "Prompt-f4xQ5", | |
"sourceHandle": "{œdataTypeœ: œPromptœ, œidœ: œPrompt-f4xQ5œ, œnameœ: œpromptœ, œoutput_typesœ: [œMessageœ]}", | |
"target": "OpenAIModel-zhgF5", | |
"targetHandle": "{œfieldNameœ: œsystem_messageœ, œidœ: œOpenAIModel-zhgF5œ, œinputTypesœ: [œMessageœ], œtypeœ: œstrœ}" | |
} | |
], | |
"nodes": [ | |
{ | |
"data": { | |
"description": "Create a prompt template with dynamic variables.", | |
"display_name": "Prompt", | |
"id": "Prompt-u7GZR", | |
"node": { | |
"base_classes": [ | |
"Message" | |
], | |
"beta": false, | |
"conditional_paths": [], | |
"custom_fields": { | |
"template": [ | |
"previous_response" | |
] | |
}, | |
"description": "Create a prompt template with dynamic variables.", | |
"display_name": "Prompt", | |
"documentation": "", | |
"edited": false, | |
"field_order": [ | |
"template" | |
], | |
"frozen": false, | |
"icon": "prompts", | |
"legacy": false, | |
"lf_version": "1.0.19.post2", | |
"metadata": {}, | |
"output_types": [], | |
"outputs": [ | |
{ | |
"cache": true, | |
"display_name": "Prompt Message", | |
"method": "build_prompt", | |
"name": "prompt", | |
"selected": "Message", | |
"types": [ | |
"Message" | |
], | |
"value": "__UNDEFINED__" | |
} | |
], | |
"pinned": false, | |
"template": { | |
"_type": "Component", | |
"code": { | |
"advanced": true, | |
"dynamic": true, | |
"fileTypes": [], | |
"file_path": "", | |
"info": "", | |
"list": false, | |
"load_from_db": false, | |
"multiline": true, | |
"name": "code", | |
"password": false, | |
"placeholder": "", | |
"required": true, | |
"show": true, | |
"title_case": false, | |
"type": "code", | |
"value": "from langflow.base.prompts.api_utils import process_prompt_template\nfrom langflow.custom import Component\nfrom langflow.inputs.inputs import DefaultPromptField\nfrom langflow.io import MessageTextInput, Output, PromptInput\nfrom langflow.schema.message import Message\nfrom langflow.template.utils import update_template_values\n\n\nclass PromptComponent(Component):\n display_name: str = \"Prompt\"\n description: str = \"Create a prompt template with dynamic variables.\"\n icon = \"prompts\"\n trace_type = \"prompt\"\n name = \"Prompt\"\n\n inputs = [\n PromptInput(name=\"template\", display_name=\"Template\"),\n MessageTextInput(\n name=\"tool_placeholder\",\n display_name=\"Tool Placeholder\",\n tool_mode=True,\n advanced=True,\n info=\"A placeholder input for tool mode.\",\n ),\n ]\n\n outputs = [\n Output(display_name=\"Prompt Message\", name=\"prompt\", method=\"build_prompt\"),\n ]\n\n async def build_prompt(self) -> Message:\n prompt = Message.from_template(**self._attributes)\n self.status = prompt.text\n return prompt\n\n def _update_template(self, frontend_node: dict):\n prompt_template = frontend_node[\"template\"][\"template\"][\"value\"]\n custom_fields = frontend_node[\"custom_fields\"]\n frontend_node_template = frontend_node[\"template\"]\n _ = process_prompt_template(\n template=prompt_template,\n name=\"template\",\n custom_fields=custom_fields,\n frontend_node_template=frontend_node_template,\n )\n return frontend_node\n\n def post_code_processing(self, new_frontend_node: dict, current_frontend_node: dict):\n \"\"\"This function is called after the code validation is done.\"\"\"\n frontend_node = super().post_code_processing(new_frontend_node, current_frontend_node)\n template = frontend_node[\"template\"][\"template\"][\"value\"]\n # Kept it duplicated for backwards compatibility\n _ = process_prompt_template(\n template=template,\n name=\"template\",\n custom_fields=frontend_node[\"custom_fields\"],\n frontend_node_template=frontend_node[\"template\"],\n )\n # Now that template is updated, we need to grab any values that were set in the current_frontend_node\n # and update the frontend_node with those values\n update_template_values(new_template=frontend_node, previous_template=current_frontend_node[\"template\"])\n return frontend_node\n\n def _get_fallback_input(self, **kwargs):\n return DefaultPromptField(**kwargs)\n" | |
}, | |
"previous_response": { | |
"advanced": false, | |
"display_name": "previous_response", | |
"dynamic": false, | |
"field_type": "str", | |
"fileTypes": [], | |
"file_path": "", | |
"info": "", | |
"input_types": [ | |
"Message", | |
"Text" | |
], | |
"list": false, | |
"load_from_db": false, | |
"multiline": true, | |
"name": "previous_response", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"type": "str", | |
"value": "" | |
}, | |
"template": { | |
"_input_type": "PromptInput", | |
"advanced": false, | |
"display_name": "Template", | |
"dynamic": false, | |
"info": "", | |
"list": false, | |
"load_from_db": false, | |
"name": "template", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_input": true, | |
"type": "prompt", | |
"value": "\n\nRESEARCH PLAN: {previous_response}\n\nUse Tavily Search to investigate the queries and analyze the findings.\nFocus on academic and reliable sources.\n\nSteps:\n1. Search using provided queries\n2. Analyze search results\n3. Verify source credibility\n4. Extract key findings\n\nFormat findings as:\n\nSEARCH RESULTS:\n[Key findings from searches]\n\nSOURCE ANALYSIS:\n[Credibility assessment]\n\nMAIN INSIGHTS:\n[Critical discoveries]\n\nEVIDENCE QUALITY:\n[Evaluation of findings]" | |
}, | |
"tool_placeholder": { | |
"_input_type": "MessageTextInput", | |
"advanced": true, | |
"display_name": "Tool Placeholder", | |
"dynamic": false, | |
"info": "A placeholder input for tool mode.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "tool_placeholder", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": true, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
} | |
}, | |
"tool_mode": false | |
}, | |
"type": "Prompt" | |
}, | |
"dragging": false, | |
"height": 347, | |
"id": "Prompt-u7GZR", | |
"position": { | |
"x": 1803.2315476328304, | |
"y": 839.0423490089254 | |
}, | |
"positionAbsolute": { | |
"x": 1803.2315476328304, | |
"y": 839.0423490089254 | |
}, | |
"selected": false, | |
"type": "genericNode", | |
"width": 320 | |
}, | |
{ | |
"data": { | |
"id": "ChatInput-Mzp4f", | |
"node": { | |
"base_classes": [ | |
"Message" | |
], | |
"beta": false, | |
"category": "inputs", | |
"conditional_paths": [], | |
"custom_fields": {}, | |
"description": "Get chat inputs from the Playground.", | |
"display_name": "Chat Input", | |
"documentation": "", | |
"edited": false, | |
"field_order": [ | |
"input_value", | |
"should_store_message", | |
"sender", | |
"sender_name", | |
"session_id", | |
"files", | |
"background_color", | |
"chat_icon", | |
"text_color" | |
], | |
"frozen": false, | |
"icon": "MessagesSquare", | |
"key": "ChatInput", | |
"legacy": false, | |
"lf_version": "1.0.19.post2", | |
"metadata": {}, | |
"output_types": [], | |
"outputs": [ | |
{ | |
"cache": true, | |
"display_name": "Message", | |
"method": "message_response", | |
"name": "message", | |
"selected": "Message", | |
"types": [ | |
"Message" | |
], | |
"value": "__UNDEFINED__" | |
} | |
], | |
"pinned": false, | |
"template": { | |
"_type": "Component", | |
"background_color": { | |
"_input_type": "MessageTextInput", | |
"advanced": true, | |
"display_name": "Background Color", | |
"dynamic": false, | |
"info": "The background color of the icon.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "background_color", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
}, | |
"chat_icon": { | |
"_input_type": "MessageTextInput", | |
"advanced": true, | |
"display_name": "Icon", | |
"dynamic": false, | |
"info": "The icon of the message.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "chat_icon", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
}, | |
"code": { | |
"advanced": true, | |
"dynamic": true, | |
"fileTypes": [], | |
"file_path": "", | |
"info": "", | |
"list": false, | |
"load_from_db": false, | |
"multiline": true, | |
"name": "code", | |
"password": false, | |
"placeholder": "", | |
"required": true, | |
"show": true, | |
"title_case": false, | |
"type": "code", | |
"value": "from langflow.base.data.utils import IMG_FILE_TYPES, TEXT_FILE_TYPES\nfrom langflow.base.io.chat import ChatComponent\nfrom langflow.inputs import BoolInput\nfrom langflow.io import DropdownInput, FileInput, MessageTextInput, MultilineInput, Output\nfrom langflow.schema.message import Message\nfrom langflow.utils.constants import MESSAGE_SENDER_AI, MESSAGE_SENDER_NAME_USER, MESSAGE_SENDER_USER\n\n\nclass ChatInput(ChatComponent):\n display_name = \"Chat Input\"\n description = \"Get chat inputs from the Playground.\"\n icon = \"MessagesSquare\"\n name = \"ChatInput\"\n\n inputs = [\n MultilineInput(\n name=\"input_value\",\n display_name=\"Text\",\n value=\"\",\n info=\"Message to be passed as input.\",\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_USER,\n info=\"Type of sender.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_USER,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n FileInput(\n name=\"files\",\n display_name=\"Files\",\n file_types=TEXT_FILE_TYPES + IMG_FILE_TYPES,\n info=\"Files to be sent with the message.\",\n advanced=True,\n is_list=True,\n ),\n MessageTextInput(\n name=\"background_color\",\n display_name=\"Background Color\",\n info=\"The background color of the icon.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"chat_icon\",\n display_name=\"Icon\",\n info=\"The icon of the message.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"text_color\",\n display_name=\"Text Color\",\n info=\"The text color of the name\",\n advanced=True,\n ),\n ]\n outputs = [\n Output(display_name=\"Message\", name=\"message\", method=\"message_response\"),\n ]\n\n async def message_response(self) -> Message:\n background_color = self.background_color\n text_color = self.text_color\n icon = self.chat_icon\n\n message = await Message.create(\n text=self.input_value,\n sender=self.sender,\n sender_name=self.sender_name,\n session_id=self.session_id,\n files=self.files,\n properties={\"background_color\": background_color, \"text_color\": text_color, \"icon\": icon},\n )\n if self.session_id and isinstance(message, Message) and self.should_store_message:\n stored_message = await self.send_message(\n message,\n )\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n" | |
}, | |
"files": { | |
"_input_type": "FileInput", | |
"advanced": true, | |
"display_name": "Files", | |
"dynamic": false, | |
"fileTypes": [ | |
"txt", | |
"md", | |
"mdx", | |
"csv", | |
"json", | |
"yaml", | |
"yml", | |
"xml", | |
"html", | |
"htm", | |
"pdf", | |
"docx", | |
"py", | |
"sh", | |
"sql", | |
"js", | |
"ts", | |
"tsx", | |
"jpg", | |
"jpeg", | |
"png", | |
"bmp", | |
"image" | |
], | |
"file_path": "", | |
"info": "Files to be sent with the message.", | |
"list": true, | |
"name": "files", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "file", | |
"value": "" | |
}, | |
"input_value": { | |
"_input_type": "MultilineInput", | |
"advanced": false, | |
"display_name": "Text", | |
"dynamic": false, | |
"info": "Message to be passed as input.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"multiline": true, | |
"name": "input_value", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "Research the effectiveness of different prompt engineering techniques in controlling AI hallucinations, with focus on real-world applications and empirical studies." | |
}, | |
"sender": { | |
"_input_type": "DropdownInput", | |
"advanced": true, | |
"combobox": false, | |
"display_name": "Sender Type", | |
"dynamic": false, | |
"info": "Type of sender.", | |
"name": "sender", | |
"options": [ | |
"Machine", | |
"User" | |
], | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "User" | |
}, | |
"sender_name": { | |
"_input_type": "MessageTextInput", | |
"advanced": true, | |
"display_name": "Sender Name", | |
"dynamic": false, | |
"info": "Name of the sender.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "sender_name", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "User" | |
}, | |
"session_id": { | |
"_input_type": "MessageTextInput", | |
"advanced": true, | |
"display_name": "Session ID", | |
"dynamic": false, | |
"info": "The session ID of the chat. If empty, the current session ID parameter will be used.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "session_id", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
}, | |
"should_store_message": { | |
"_input_type": "BoolInput", | |
"advanced": true, | |
"display_name": "Store Messages", | |
"dynamic": false, | |
"info": "Store the message in the history.", | |
"list": false, | |
"name": "should_store_message", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "bool", | |
"value": true | |
}, | |
"text_color": { | |
"_input_type": "MessageTextInput", | |
"advanced": true, | |
"display_name": "Text Color", | |
"dynamic": false, | |
"info": "The text color of the name", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "text_color", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
} | |
} | |
}, | |
"type": "ChatInput" | |
}, | |
"dragging": false, | |
"height": 234, | |
"id": "ChatInput-Mzp4f", | |
"position": { | |
"x": 756.0075981758582, | |
"y": 756.7423476254241 | |
}, | |
"positionAbsolute": { | |
"x": 756.0075981758582, | |
"y": 756.7423476254241 | |
}, | |
"selected": false, | |
"type": "genericNode", | |
"width": 320 | |
}, | |
{ | |
"data": { | |
"description": "Display a chat message in the Playground.", | |
"display_name": "Chat Output", | |
"id": "ChatOutput-mWv8X", | |
"node": { | |
"base_classes": [ | |
"Message" | |
], | |
"beta": false, | |
"conditional_paths": [], | |
"custom_fields": {}, | |
"description": "Display a chat message in the Playground.", | |
"display_name": "Chat Output", | |
"documentation": "", | |
"edited": false, | |
"field_order": [ | |
"input_value", | |
"should_store_message", | |
"sender", | |
"sender_name", | |
"session_id", | |
"data_template", | |
"background_color", | |
"chat_icon", | |
"text_color" | |
], | |
"frozen": false, | |
"icon": "MessagesSquare", | |
"legacy": false, | |
"lf_version": "1.0.19.post2", | |
"metadata": {}, | |
"output_types": [], | |
"outputs": [ | |
{ | |
"cache": true, | |
"display_name": "Message", | |
"method": "message_response", | |
"name": "message", | |
"selected": "Message", | |
"types": [ | |
"Message" | |
], | |
"value": "__UNDEFINED__" | |
} | |
], | |
"pinned": false, | |
"template": { | |
"_type": "Component", | |
"background_color": { | |
"_input_type": "MessageTextInput", | |
"advanced": true, | |
"display_name": "Background Color", | |
"dynamic": false, | |
"info": "The background color of the icon.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "background_color", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
}, | |
"chat_icon": { | |
"_input_type": "MessageTextInput", | |
"advanced": true, | |
"display_name": "Icon", | |
"dynamic": false, | |
"info": "The icon of the message.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "chat_icon", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
}, | |
"code": { | |
"advanced": true, | |
"dynamic": true, | |
"fileTypes": [], | |
"file_path": "", | |
"info": "", | |
"list": false, | |
"load_from_db": false, | |
"multiline": true, | |
"name": "code", | |
"password": false, | |
"placeholder": "", | |
"required": true, | |
"show": true, | |
"title_case": false, | |
"type": "code", | |
"value": "from langflow.base.io.chat import ChatComponent\nfrom langflow.inputs import BoolInput\nfrom langflow.io import DropdownInput, MessageInput, MessageTextInput, Output\nfrom langflow.schema.message import Message\nfrom langflow.schema.properties import Source\nfrom langflow.utils.constants import MESSAGE_SENDER_AI, MESSAGE_SENDER_NAME_AI, MESSAGE_SENDER_USER\n\n\nclass ChatOutput(ChatComponent):\n display_name = \"Chat Output\"\n description = \"Display a chat message in the Playground.\"\n icon = \"MessagesSquare\"\n name = \"ChatOutput\"\n\n inputs = [\n MessageInput(\n name=\"input_value\",\n display_name=\"Text\",\n info=\"Message to be passed as output.\",\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_AI,\n advanced=True,\n info=\"Type of sender.\",\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_AI,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"data_template\",\n display_name=\"Data Template\",\n value=\"{text}\",\n advanced=True,\n info=\"Template to convert Data to Text. If left empty, it will be dynamically set to the Data's text key.\",\n ),\n MessageTextInput(\n name=\"background_color\",\n display_name=\"Background Color\",\n info=\"The background color of the icon.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"chat_icon\",\n display_name=\"Icon\",\n info=\"The icon of the message.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"text_color\",\n display_name=\"Text Color\",\n info=\"The text color of the name\",\n advanced=True,\n ),\n ]\n outputs = [\n Output(\n display_name=\"Message\",\n name=\"message\",\n method=\"message_response\",\n ),\n ]\n\n def _build_source(self, id_: str | None, display_name: str | None, source: str | None) -> Source:\n source_dict = {}\n if id_:\n source_dict[\"id\"] = id_\n if display_name:\n source_dict[\"display_name\"] = display_name\n if source:\n source_dict[\"source\"] = source\n return Source(**source_dict)\n\n async def message_response(self) -> Message:\n source, icon, display_name, source_id = self.get_properties_from_source_component()\n background_color = self.background_color\n text_color = self.text_color\n if self.chat_icon:\n icon = self.chat_icon\n message = self.input_value if isinstance(self.input_value, Message) else Message(text=self.input_value)\n message.sender = self.sender\n message.sender_name = self.sender_name\n message.session_id = self.session_id\n message.flow_id = self.graph.flow_id if hasattr(self, \"graph\") else None\n message.properties.source = self._build_source(source_id, display_name, source)\n message.properties.icon = icon\n message.properties.background_color = background_color\n message.properties.text_color = text_color\n if self.session_id and isinstance(message, Message) and self.should_store_message:\n stored_message = await self.send_message(\n message,\n )\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n" | |
}, | |
"data_template": { | |
"_input_type": "MessageTextInput", | |
"advanced": true, | |
"display_name": "Data Template", | |
"dynamic": false, | |
"info": "Template to convert Data to Text. If left empty, it will be dynamically set to the Data's text key.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "data_template", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "{text}" | |
}, | |
"input_value": { | |
"_input_type": "MessageInput", | |
"advanced": false, | |
"display_name": "Text", | |
"dynamic": false, | |
"info": "Message to be passed as output.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "input_value", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
}, | |
"sender": { | |
"_input_type": "DropdownInput", | |
"advanced": true, | |
"combobox": false, | |
"display_name": "Sender Type", | |
"dynamic": false, | |
"info": "Type of sender.", | |
"name": "sender", | |
"options": [ | |
"Machine", | |
"User" | |
], | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "Machine" | |
}, | |
"sender_name": { | |
"_input_type": "MessageTextInput", | |
"advanced": true, | |
"display_name": "Sender Name", | |
"dynamic": false, | |
"info": "Name of the sender.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "sender_name", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "AI" | |
}, | |
"session_id": { | |
"_input_type": "MessageTextInput", | |
"advanced": true, | |
"display_name": "Session ID", | |
"dynamic": false, | |
"info": "The session ID of the chat. If empty, the current session ID parameter will be used.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "session_id", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
}, | |
"should_store_message": { | |
"_input_type": "BoolInput", | |
"advanced": true, | |
"display_name": "Store Messages", | |
"dynamic": false, | |
"info": "Store the message in the history.", | |
"list": false, | |
"name": "should_store_message", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "bool", | |
"value": true | |
}, | |
"text_color": { | |
"_input_type": "MessageTextInput", | |
"advanced": true, | |
"display_name": "Text Color", | |
"dynamic": false, | |
"info": "The text color of the name", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "text_color", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
} | |
}, | |
"tool_mode": false | |
}, | |
"type": "ChatOutput" | |
}, | |
"dragging": false, | |
"height": 234, | |
"id": "ChatOutput-mWv8X", | |
"position": { | |
"x": 3200.774558432761, | |
"y": 853.9881404769172 | |
}, | |
"positionAbsolute": { | |
"x": 3200.774558432761, | |
"y": 853.9881404769172 | |
}, | |
"selected": false, | |
"type": "genericNode", | |
"width": 320 | |
}, | |
{ | |
"data": { | |
"description": "Create a prompt template with dynamic variables.", | |
"display_name": "Prompt", | |
"id": "Prompt-yDDjW", | |
"node": { | |
"base_classes": [ | |
"Message" | |
], | |
"beta": false, | |
"conditional_paths": [], | |
"custom_fields": { | |
"template": [ | |
"search_results", | |
"input_value" | |
] | |
}, | |
"description": "Create a prompt template with dynamic variables.", | |
"display_name": "Prompt", | |
"documentation": "", | |
"edited": false, | |
"field_order": [ | |
"template" | |
], | |
"frozen": false, | |
"icon": "prompts", | |
"legacy": false, | |
"lf_version": "1.0.19.post2", | |
"metadata": {}, | |
"output_types": [], | |
"outputs": [ | |
{ | |
"cache": true, | |
"display_name": "Prompt Message", | |
"method": "build_prompt", | |
"name": "prompt", | |
"selected": "Message", | |
"types": [ | |
"Message" | |
], | |
"value": "__UNDEFINED__" | |
} | |
], | |
"pinned": false, | |
"template": { | |
"_type": "Component", | |
"code": { | |
"advanced": true, | |
"dynamic": true, | |
"fileTypes": [], | |
"file_path": "", | |
"info": "", | |
"list": false, | |
"load_from_db": false, | |
"multiline": true, | |
"name": "code", | |
"password": false, | |
"placeholder": "", | |
"required": true, | |
"show": true, | |
"title_case": false, | |
"type": "code", | |
"value": "from langflow.base.prompts.api_utils import process_prompt_template\nfrom langflow.custom import Component\nfrom langflow.inputs.inputs import DefaultPromptField\nfrom langflow.io import MessageTextInput, Output, PromptInput\nfrom langflow.schema.message import Message\nfrom langflow.template.utils import update_template_values\n\n\nclass PromptComponent(Component):\n display_name: str = \"Prompt\"\n description: str = \"Create a prompt template with dynamic variables.\"\n icon = \"prompts\"\n trace_type = \"prompt\"\n name = \"Prompt\"\n\n inputs = [\n PromptInput(name=\"template\", display_name=\"Template\"),\n MessageTextInput(\n name=\"tool_placeholder\",\n display_name=\"Tool Placeholder\",\n tool_mode=True,\n advanced=True,\n info=\"A placeholder input for tool mode.\",\n ),\n ]\n\n outputs = [\n Output(display_name=\"Prompt Message\", name=\"prompt\", method=\"build_prompt\"),\n ]\n\n async def build_prompt(self) -> Message:\n prompt = Message.from_template(**self._attributes)\n self.status = prompt.text\n return prompt\n\n def _update_template(self, frontend_node: dict):\n prompt_template = frontend_node[\"template\"][\"template\"][\"value\"]\n custom_fields = frontend_node[\"custom_fields\"]\n frontend_node_template = frontend_node[\"template\"]\n _ = process_prompt_template(\n template=prompt_template,\n name=\"template\",\n custom_fields=custom_fields,\n frontend_node_template=frontend_node_template,\n )\n return frontend_node\n\n def post_code_processing(self, new_frontend_node: dict, current_frontend_node: dict):\n \"\"\"This function is called after the code validation is done.\"\"\"\n frontend_node = super().post_code_processing(new_frontend_node, current_frontend_node)\n template = frontend_node[\"template\"][\"template\"][\"value\"]\n # Kept it duplicated for backwards compatibility\n _ = process_prompt_template(\n template=template,\n name=\"template\",\n custom_fields=frontend_node[\"custom_fields\"],\n frontend_node_template=frontend_node[\"template\"],\n )\n # Now that template is updated, we need to grab any values that were set in the current_frontend_node\n # and update the frontend_node with those values\n update_template_values(new_template=frontend_node, previous_template=current_frontend_node[\"template\"])\n return frontend_node\n\n def _get_fallback_input(self, **kwargs):\n return DefaultPromptField(**kwargs)\n" | |
}, | |
"input_value": { | |
"advanced": false, | |
"display_name": "input_value", | |
"dynamic": false, | |
"field_type": "str", | |
"fileTypes": [], | |
"file_path": "", | |
"info": "", | |
"input_types": [ | |
"Message", | |
"Text" | |
], | |
"list": false, | |
"load_from_db": false, | |
"multiline": true, | |
"name": "input_value", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"type": "str", | |
"value": "" | |
}, | |
"search_results": { | |
"advanced": false, | |
"display_name": "search_results", | |
"dynamic": false, | |
"field_type": "str", | |
"fileTypes": [], | |
"file_path": "", | |
"info": "", | |
"input_types": [ | |
"Message", | |
"Text" | |
], | |
"list": false, | |
"load_from_db": false, | |
"multiline": true, | |
"name": "search_results", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"type": "str", | |
"value": "" | |
}, | |
"template": { | |
"_input_type": "PromptInput", | |
"advanced": false, | |
"display_name": "Template", | |
"dynamic": false, | |
"info": "", | |
"list": false, | |
"load_from_db": false, | |
"name": "template", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_input": true, | |
"type": "prompt", | |
"value": "RESEARCH FINDINGS: {search_results}\nORIGINAL QUERY: {input_value}\n" | |
}, | |
"tool_placeholder": { | |
"_input_type": "MessageTextInput", | |
"advanced": true, | |
"display_name": "Tool Placeholder", | |
"dynamic": false, | |
"info": "A placeholder input for tool mode.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "tool_placeholder", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": true, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
} | |
}, | |
"tool_mode": false | |
}, | |
"type": "Prompt" | |
}, | |
"dragging": false, | |
"height": 433, | |
"id": "Prompt-yDDjW", | |
"position": { | |
"x": 2504.138359606453, | |
"y": 434.061360540584 | |
}, | |
"positionAbsolute": { | |
"x": 2504.138359606453, | |
"y": 434.061360540584 | |
}, | |
"selected": false, | |
"type": "genericNode", | |
"width": 320 | |
}, | |
{ | |
"data": { | |
"description": "**Tavily AI** is a search engine optimized for LLMs and RAG, aimed at efficient, quick, and persistent search results. It can be used independently or as an agent tool.\n\nNote: Check 'Advanced' for all options.\n", | |
"display_name": "Tavily AI Search", | |
"id": "TavilyAISearch-rI4aD", | |
"node": { | |
"base_classes": [ | |
"Data", | |
"Tool" | |
], | |
"beta": false, | |
"conditional_paths": [], | |
"custom_fields": {}, | |
"description": "**Tavily AI** is a search engine optimized for LLMs and RAG, aimed at efficient, quick, and persistent search results. It can be used independently or as an agent tool.\n\nNote: Check 'Advanced' for all options.\n", | |
"display_name": "Tavily AI Search", | |
"documentation": "https://docs.tavily.com/", | |
"edited": false, | |
"field_order": [ | |
"api_key", | |
"query", | |
"search_depth", | |
"topic", | |
"max_results", | |
"include_images", | |
"include_answer" | |
], | |
"frozen": false, | |
"icon": "TavilyIcon", | |
"legacy": false, | |
"lf_version": "1.0.19.post2", | |
"metadata": {}, | |
"output_types": [], | |
"outputs": [ | |
{ | |
"cache": true, | |
"display_name": "Data", | |
"method": "run_model", | |
"name": "api_run_model", | |
"required_inputs": [ | |
"api_key" | |
], | |
"selected": "Data", | |
"types": [ | |
"Data" | |
], | |
"value": "__UNDEFINED__" | |
}, | |
{ | |
"cache": true, | |
"display_name": "Tool", | |
"method": "build_tool", | |
"name": "api_build_tool", | |
"required_inputs": [ | |
"api_key" | |
], | |
"selected": "Tool", | |
"types": [ | |
"Tool" | |
], | |
"value": "__UNDEFINED__" | |
} | |
], | |
"pinned": false, | |
"template": { | |
"_type": "Component", | |
"api_key": { | |
"_input_type": "SecretStrInput", | |
"advanced": false, | |
"display_name": "Tavily API Key", | |
"dynamic": false, | |
"info": "Your Tavily API Key.", | |
"input_types": [ | |
"Message" | |
], | |
"load_from_db": true, | |
"name": "api_key", | |
"password": true, | |
"placeholder": "", | |
"required": true, | |
"show": true, | |
"title_case": false, | |
"type": "str", | |
"value": "" | |
}, | |
"code": { | |
"advanced": true, | |
"dynamic": true, | |
"fileTypes": [], | |
"file_path": "", | |
"info": "", | |
"list": false, | |
"load_from_db": false, | |
"multiline": true, | |
"name": "code", | |
"password": false, | |
"placeholder": "", | |
"required": true, | |
"show": true, | |
"title_case": false, | |
"type": "code", | |
"value": "from enum import Enum\n\nimport httpx\nfrom langchain.tools import StructuredTool\nfrom langchain_core.tools import ToolException\nfrom loguru import logger\nfrom pydantic import BaseModel, Field\n\nfrom langflow.base.langchain_utilities.model import LCToolComponent\nfrom langflow.field_typing import Tool\nfrom langflow.inputs import BoolInput, DropdownInput, IntInput, MessageTextInput, SecretStrInput\nfrom langflow.schema import Data\n\n\nclass TavilySearchDepth(Enum):\n BASIC = \"basic\"\n ADVANCED = \"advanced\"\n\n\nclass TavilySearchTopic(Enum):\n GENERAL = \"general\"\n NEWS = \"news\"\n\n\nclass TavilySearchSchema(BaseModel):\n query: str = Field(..., description=\"The search query you want to execute with Tavily.\")\n search_depth: TavilySearchDepth = Field(TavilySearchDepth.BASIC, description=\"The depth of the search.\")\n topic: TavilySearchTopic = Field(TavilySearchTopic.GENERAL, description=\"The category of the search.\")\n max_results: int = Field(5, description=\"The maximum number of search results to return.\")\n include_images: bool = Field(default=False, description=\"Include a list of query-related images in the response.\")\n include_answer: bool = Field(default=False, description=\"Include a short answer to original query.\")\n\n\nclass TavilySearchToolComponent(LCToolComponent):\n display_name = \"Tavily AI Search\"\n description = \"\"\"**Tavily AI** is a search engine optimized for LLMs and RAG, \\\n aimed at efficient, quick, and persistent search results. It can be used independently or as an agent tool.\n\nNote: Check 'Advanced' for all options.\n\"\"\"\n icon = \"TavilyIcon\"\n name = \"TavilyAISearch\"\n documentation = \"https://docs.tavily.com/\"\n\n inputs = [\n SecretStrInput(\n name=\"api_key\",\n display_name=\"Tavily API Key\",\n required=True,\n info=\"Your Tavily API Key.\",\n ),\n MessageTextInput(\n name=\"query\",\n display_name=\"Search Query\",\n info=\"The search query you want to execute with Tavily.\",\n ),\n DropdownInput(\n name=\"search_depth\",\n display_name=\"Search Depth\",\n info=\"The depth of the search.\",\n options=list(TavilySearchDepth),\n value=TavilySearchDepth.ADVANCED,\n advanced=True,\n ),\n DropdownInput(\n name=\"topic\",\n display_name=\"Search Topic\",\n info=\"The category of the search.\",\n options=list(TavilySearchTopic),\n value=TavilySearchTopic.GENERAL,\n advanced=True,\n ),\n IntInput(\n name=\"max_results\",\n display_name=\"Max Results\",\n info=\"The maximum number of search results to return.\",\n value=5,\n advanced=True,\n ),\n BoolInput(\n name=\"include_images\",\n display_name=\"Include Images\",\n info=\"Include a list of query-related images in the response.\",\n value=True,\n advanced=True,\n ),\n BoolInput(\n name=\"include_answer\",\n display_name=\"Include Answer\",\n info=\"Include a short answer to original query.\",\n value=True,\n advanced=True,\n ),\n ]\n\n def run_model(self) -> list[Data]:\n # Convert string values to enum instances with validation\n try:\n search_depth_enum = (\n self.search_depth\n if isinstance(self.search_depth, TavilySearchDepth)\n else TavilySearchDepth(str(self.search_depth).lower())\n )\n except ValueError as e:\n error_message = f\"Invalid search depth value: {e!s}\"\n self.status = error_message\n return [Data(data={\"error\": error_message})]\n\n try:\n topic_enum = (\n self.topic if isinstance(self.topic, TavilySearchTopic) else TavilySearchTopic(str(self.topic).lower())\n )\n except ValueError as e:\n error_message = f\"Invalid topic value: {e!s}\"\n self.status = error_message\n return [Data(data={\"error\": error_message})]\n\n return self._tavily_search(\n self.query,\n search_depth=search_depth_enum,\n topic=topic_enum,\n max_results=self.max_results,\n include_images=self.include_images,\n include_answer=self.include_answer,\n )\n\n def build_tool(self) -> Tool:\n return StructuredTool.from_function(\n name=\"tavily_search\",\n description=\"Perform a web search using the Tavily API.\",\n func=self._tavily_search,\n args_schema=TavilySearchSchema,\n )\n\n def _tavily_search(\n self,\n query: str,\n *,\n search_depth: TavilySearchDepth = TavilySearchDepth.BASIC,\n topic: TavilySearchTopic = TavilySearchTopic.GENERAL,\n max_results: int = 5,\n include_images: bool = False,\n include_answer: bool = False,\n ) -> list[Data]:\n # Validate enum values\n if not isinstance(search_depth, TavilySearchDepth):\n msg = f\"Invalid search_depth value: {search_depth}\"\n raise TypeError(msg)\n if not isinstance(topic, TavilySearchTopic):\n msg = f\"Invalid topic value: {topic}\"\n raise TypeError(msg)\n\n try:\n url = \"https://api.tavily.com/search\"\n headers = {\n \"content-type\": \"application/json\",\n \"accept\": \"application/json\",\n }\n payload = {\n \"api_key\": self.api_key,\n \"query\": query,\n \"search_depth\": search_depth.value,\n \"topic\": topic.value,\n \"max_results\": max_results,\n \"include_images\": include_images,\n \"include_answer\": include_answer,\n }\n\n with httpx.Client() as client:\n response = client.post(url, json=payload, headers=headers)\n\n response.raise_for_status()\n search_results = response.json()\n\n data_results = [\n Data(\n data={\n \"title\": result.get(\"title\"),\n \"url\": result.get(\"url\"),\n \"content\": result.get(\"content\"),\n \"score\": result.get(\"score\"),\n }\n )\n for result in search_results.get(\"results\", [])\n ]\n\n if include_answer and search_results.get(\"answer\"):\n data_results.insert(0, Data(data={\"answer\": search_results[\"answer\"]}))\n\n if include_images and search_results.get(\"images\"):\n data_results.append(Data(data={\"images\": search_results[\"images\"]}))\n\n self.status = data_results # type: ignore[assignment]\n\n except httpx.HTTPStatusError as e:\n error_message = f\"HTTP error: {e.response.status_code} - {e.response.text}\"\n logger.debug(error_message)\n self.status = error_message\n raise ToolException(error_message) from e\n except Exception as e:\n error_message = f\"Unexpected error: {e}\"\n logger.opt(exception=True).debug(\"Error running Tavily Search\")\n self.status = error_message\n raise ToolException(error_message) from e\n return data_results\n" | |
}, | |
"include_answer": { | |
"_input_type": "BoolInput", | |
"advanced": true, | |
"display_name": "Include Answer", | |
"dynamic": false, | |
"info": "Include a short answer to original query.", | |
"list": false, | |
"name": "include_answer", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "bool", | |
"value": true | |
}, | |
"include_images": { | |
"_input_type": "BoolInput", | |
"advanced": true, | |
"display_name": "Include Images", | |
"dynamic": false, | |
"info": "Include a list of query-related images in the response.", | |
"list": false, | |
"name": "include_images", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "bool", | |
"value": true | |
}, | |
"max_results": { | |
"_input_type": "IntInput", | |
"advanced": true, | |
"display_name": "Max Results", | |
"dynamic": false, | |
"info": "The maximum number of search results to return.", | |
"list": false, | |
"name": "max_results", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "int", | |
"value": 5 | |
}, | |
"query": { | |
"_input_type": "MessageTextInput", | |
"advanced": false, | |
"display_name": "Search Query", | |
"dynamic": false, | |
"info": "The search query you want to execute with Tavily.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "query", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
}, | |
"search_depth": { | |
"_input_type": "DropdownInput", | |
"advanced": true, | |
"combobox": false, | |
"display_name": "Search Depth", | |
"dynamic": false, | |
"info": "The depth of the search.", | |
"load_from_db": false, | |
"name": "search_depth", | |
"options": [ | |
"basic", | |
"advanced" | |
], | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "advanced" | |
}, | |
"topic": { | |
"_input_type": "DropdownInput", | |
"advanced": true, | |
"combobox": false, | |
"display_name": "Search Topic", | |
"dynamic": false, | |
"info": "The category of the search.", | |
"load_from_db": false, | |
"name": "topic", | |
"options": [ | |
"general", | |
"news" | |
], | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "general" | |
} | |
}, | |
"tool_mode": false | |
}, | |
"type": "TavilyAISearch" | |
}, | |
"dragging": false, | |
"height": 481, | |
"id": "TavilyAISearch-rI4aD", | |
"position": { | |
"x": 1802.2291194402355, | |
"y": 381.88177151343945 | |
}, | |
"positionAbsolute": { | |
"x": 1802.2291194402355, | |
"y": 381.88177151343945 | |
}, | |
"selected": false, | |
"type": "genericNode", | |
"width": 320 | |
}, | |
{ | |
"data": { | |
"description": "Generates text using OpenAI LLMs.", | |
"display_name": "OpenAI", | |
"id": "OpenAIModel-Rc3MO", | |
"node": { | |
"base_classes": [ | |
"LanguageModel", | |
"Message" | |
], | |
"beta": false, | |
"conditional_paths": [], | |
"custom_fields": {}, | |
"description": "Generates text using OpenAI LLMs.", | |
"display_name": "OpenAI", | |
"documentation": "", | |
"edited": false, | |
"field_order": [ | |
"input_value", | |
"system_message", | |
"stream", | |
"max_tokens", | |
"model_kwargs", | |
"json_mode", | |
"output_schema", | |
"model_name", | |
"openai_api_base", | |
"api_key", | |
"temperature", | |
"seed", | |
"output_parser" | |
], | |
"frozen": false, | |
"icon": "OpenAI", | |
"legacy": false, | |
"lf_version": "1.0.19.post2", | |
"metadata": {}, | |
"output_types": [], | |
"outputs": [ | |
{ | |
"cache": true, | |
"display_name": "Text", | |
"method": "text_response", | |
"name": "text_output", | |
"required_inputs": [], | |
"selected": "Message", | |
"types": [ | |
"Message" | |
], | |
"value": "__UNDEFINED__" | |
}, | |
{ | |
"cache": true, | |
"display_name": "Language Model", | |
"method": "build_model", | |
"name": "model_output", | |
"required_inputs": [], | |
"selected": "LanguageModel", | |
"types": [ | |
"LanguageModel" | |
], | |
"value": "__UNDEFINED__" | |
} | |
], | |
"pinned": false, | |
"template": { | |
"_type": "Component", | |
"api_key": { | |
"_input_type": "SecretStrInput", | |
"advanced": false, | |
"display_name": "OpenAI API Key", | |
"dynamic": false, | |
"info": "The OpenAI API Key to use for the OpenAI model.", | |
"input_types": [ | |
"Message" | |
], | |
"load_from_db": true, | |
"name": "api_key", | |
"password": true, | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"type": "str", | |
"value": "OPENAI_API_KEY" | |
}, | |
"code": { | |
"advanced": true, | |
"dynamic": true, | |
"fileTypes": [], | |
"file_path": "", | |
"info": "", | |
"list": false, | |
"load_from_db": false, | |
"multiline": true, | |
"name": "code", | |
"password": false, | |
"placeholder": "", | |
"required": true, | |
"show": true, | |
"title_case": false, | |
"type": "code", | |
"value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, IntInput, SecretStrInput, SliderInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(\n name=\"model_kwargs\",\n display_name=\"Model Kwargs\",\n advanced=True,\n info=\"Additional keyword arguments to pass to the model.\",\n ),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n SliderInput(\n name=\"temperature\", display_name=\"Temperature\", value=0.1, range_spec=RangeSpec(min=0, max=2, step=0.01)\n ),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" | |
}, | |
"input_value": { | |
"_input_type": "MessageInput", | |
"advanced": false, | |
"display_name": "Input", | |
"dynamic": false, | |
"info": "", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "input_value", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
}, | |
"json_mode": { | |
"_input_type": "BoolInput", | |
"advanced": true, | |
"display_name": "JSON Mode", | |
"dynamic": false, | |
"info": "If True, it will output JSON regardless of passing a schema.", | |
"list": false, | |
"name": "json_mode", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "bool", | |
"value": false | |
}, | |
"max_tokens": { | |
"_input_type": "IntInput", | |
"advanced": true, | |
"display_name": "Max Tokens", | |
"dynamic": false, | |
"info": "The maximum number of tokens to generate. Set to 0 for unlimited tokens.", | |
"list": false, | |
"name": "max_tokens", | |
"placeholder": "", | |
"range_spec": { | |
"max": 128000, | |
"min": 0, | |
"step": 0.1, | |
"step_type": "float" | |
}, | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "int", | |
"value": "" | |
}, | |
"model_kwargs": { | |
"_input_type": "DictInput", | |
"advanced": true, | |
"display_name": "Model Kwargs", | |
"dynamic": false, | |
"info": "Additional keyword arguments to pass to the model.", | |
"list": false, | |
"name": "model_kwargs", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_input": true, | |
"type": "dict", | |
"value": {} | |
}, | |
"model_name": { | |
"_input_type": "DropdownInput", | |
"advanced": false, | |
"combobox": false, | |
"display_name": "Model Name", | |
"dynamic": false, | |
"info": "", | |
"name": "model_name", | |
"options": [ | |
"gpt-4o-mini", | |
"gpt-4o", | |
"gpt-4-turbo", | |
"gpt-4-turbo-preview", | |
"gpt-4", | |
"gpt-3.5-turbo", | |
"gpt-3.5-turbo-0125" | |
], | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "gpt-4o-mini" | |
}, | |
"openai_api_base": { | |
"_input_type": "StrInput", | |
"advanced": true, | |
"display_name": "OpenAI API Base", | |
"dynamic": false, | |
"info": "The base URL of the OpenAI API. Defaults to https://api.openai.com/v1. You can change this to use other APIs like JinaChat, LocalAI and Prem.", | |
"list": false, | |
"load_from_db": false, | |
"name": "openai_api_base", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
}, | |
"output_parser": { | |
"_input_type": "HandleInput", | |
"advanced": true, | |
"display_name": "Output Parser", | |
"dynamic": false, | |
"info": "The parser to use to parse the output of the model", | |
"input_types": [ | |
"OutputParser" | |
], | |
"list": false, | |
"name": "output_parser", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "other", | |
"value": "" | |
}, | |
"output_schema": { | |
"_input_type": "DictInput", | |
"advanced": true, | |
"display_name": "Schema", | |
"dynamic": false, | |
"info": "The schema for the Output of the model. You must pass the word JSON in the prompt. If left blank, JSON mode will be disabled. [DEPRECATED]", | |
"list": true, | |
"name": "output_schema", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_input": true, | |
"type": "dict", | |
"value": {} | |
}, | |
"seed": { | |
"_input_type": "IntInput", | |
"advanced": true, | |
"display_name": "Seed", | |
"dynamic": false, | |
"info": "The seed controls the reproducibility of the job.", | |
"list": false, | |
"name": "seed", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "int", | |
"value": 1 | |
}, | |
"stream": { | |
"_input_type": "BoolInput", | |
"advanced": false, | |
"display_name": "Stream", | |
"dynamic": false, | |
"info": "Stream the response from the model. Streaming works only in Chat.", | |
"list": false, | |
"name": "stream", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "bool", | |
"value": false | |
}, | |
"system_message": { | |
"_input_type": "MessageTextInput", | |
"advanced": false, | |
"display_name": "System Message", | |
"dynamic": false, | |
"info": "System message to pass to the model.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "system_message", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
}, | |
"temperature": { | |
"_input_type": "FloatInput", | |
"advanced": false, | |
"display_name": "Temperature", | |
"dynamic": false, | |
"info": "", | |
"list": false, | |
"name": "temperature", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "float", | |
"value": 0.1 | |
} | |
}, | |
"tool_mode": false | |
}, | |
"type": "OpenAIModel" | |
}, | |
"dragging": false, | |
"height": 630, | |
"id": "OpenAIModel-Rc3MO", | |
"position": { | |
"x": 1457.8987895868838, | |
"y": 543.8838473503562 | |
}, | |
"positionAbsolute": { | |
"x": 1457.8987895868838, | |
"y": 543.8838473503562 | |
}, | |
"selected": false, | |
"type": "genericNode", | |
"width": 320 | |
}, | |
{ | |
"data": { | |
"description": "Generates text using OpenAI LLMs.", | |
"display_name": "OpenAI", | |
"id": "OpenAIModel-zhgF5", | |
"node": { | |
"base_classes": [ | |
"LanguageModel", | |
"Message" | |
], | |
"beta": false, | |
"conditional_paths": [], | |
"custom_fields": {}, | |
"description": "Generates text using OpenAI LLMs.", | |
"display_name": "OpenAI", | |
"documentation": "", | |
"edited": false, | |
"field_order": [ | |
"input_value", | |
"system_message", | |
"stream", | |
"max_tokens", | |
"model_kwargs", | |
"json_mode", | |
"output_schema", | |
"model_name", | |
"openai_api_base", | |
"api_key", | |
"temperature", | |
"seed", | |
"output_parser" | |
], | |
"frozen": false, | |
"icon": "OpenAI", | |
"legacy": false, | |
"lf_version": "1.0.19.post2", | |
"metadata": {}, | |
"output_types": [], | |
"outputs": [ | |
{ | |
"cache": true, | |
"display_name": "Text", | |
"method": "text_response", | |
"name": "text_output", | |
"required_inputs": [], | |
"selected": "Message", | |
"types": [ | |
"Message" | |
], | |
"value": "__UNDEFINED__" | |
}, | |
{ | |
"cache": true, | |
"display_name": "Language Model", | |
"method": "build_model", | |
"name": "model_output", | |
"required_inputs": [], | |
"selected": "LanguageModel", | |
"types": [ | |
"LanguageModel" | |
], | |
"value": "__UNDEFINED__" | |
} | |
], | |
"pinned": false, | |
"template": { | |
"_type": "Component", | |
"api_key": { | |
"_input_type": "SecretStrInput", | |
"advanced": false, | |
"display_name": "OpenAI API Key", | |
"dynamic": false, | |
"info": "The OpenAI API Key to use for the OpenAI model.", | |
"input_types": [ | |
"Message" | |
], | |
"load_from_db": true, | |
"name": "api_key", | |
"password": true, | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"type": "str", | |
"value": "OPENAI_API_KEY" | |
}, | |
"code": { | |
"advanced": true, | |
"dynamic": true, | |
"fileTypes": [], | |
"file_path": "", | |
"info": "", | |
"list": false, | |
"load_from_db": false, | |
"multiline": true, | |
"name": "code", | |
"password": false, | |
"placeholder": "", | |
"required": true, | |
"show": true, | |
"title_case": false, | |
"type": "code", | |
"value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, IntInput, SecretStrInput, SliderInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(\n name=\"model_kwargs\",\n display_name=\"Model Kwargs\",\n advanced=True,\n info=\"Additional keyword arguments to pass to the model.\",\n ),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n SliderInput(\n name=\"temperature\", display_name=\"Temperature\", value=0.1, range_spec=RangeSpec(min=0, max=2, step=0.01)\n ),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" | |
}, | |
"input_value": { | |
"_input_type": "MessageInput", | |
"advanced": false, | |
"display_name": "Input", | |
"dynamic": false, | |
"info": "", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "input_value", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
}, | |
"json_mode": { | |
"_input_type": "BoolInput", | |
"advanced": true, | |
"display_name": "JSON Mode", | |
"dynamic": false, | |
"info": "If True, it will output JSON regardless of passing a schema.", | |
"list": false, | |
"name": "json_mode", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "bool", | |
"value": false | |
}, | |
"max_tokens": { | |
"_input_type": "IntInput", | |
"advanced": true, | |
"display_name": "Max Tokens", | |
"dynamic": false, | |
"info": "The maximum number of tokens to generate. Set to 0 for unlimited tokens.", | |
"list": false, | |
"name": "max_tokens", | |
"placeholder": "", | |
"range_spec": { | |
"max": 128000, | |
"min": 0, | |
"step": 0.1, | |
"step_type": "float" | |
}, | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "int", | |
"value": "" | |
}, | |
"model_kwargs": { | |
"_input_type": "DictInput", | |
"advanced": true, | |
"display_name": "Model Kwargs", | |
"dynamic": false, | |
"info": "Additional keyword arguments to pass to the model.", | |
"list": false, | |
"name": "model_kwargs", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_input": true, | |
"type": "dict", | |
"value": {} | |
}, | |
"model_name": { | |
"_input_type": "DropdownInput", | |
"advanced": false, | |
"combobox": false, | |
"display_name": "Model Name", | |
"dynamic": false, | |
"info": "", | |
"name": "model_name", | |
"options": [ | |
"gpt-4o-mini", | |
"gpt-4o", | |
"gpt-4-turbo", | |
"gpt-4-turbo-preview", | |
"gpt-4", | |
"gpt-3.5-turbo", | |
"gpt-3.5-turbo-0125" | |
], | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "gpt-4o-mini" | |
}, | |
"openai_api_base": { | |
"_input_type": "StrInput", | |
"advanced": true, | |
"display_name": "OpenAI API Base", | |
"dynamic": false, | |
"info": "The base URL of the OpenAI API. Defaults to https://api.openai.com/v1. You can change this to use other APIs like JinaChat, LocalAI and Prem.", | |
"list": false, | |
"load_from_db": false, | |
"name": "openai_api_base", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
}, | |
"output_parser": { | |
"_input_type": "HandleInput", | |
"advanced": true, | |
"display_name": "Output Parser", | |
"dynamic": false, | |
"info": "The parser to use to parse the output of the model", | |
"input_types": [ | |
"OutputParser" | |
], | |
"list": false, | |
"name": "output_parser", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "other", | |
"value": "" | |
}, | |
"output_schema": { | |
"_input_type": "DictInput", | |
"advanced": true, | |
"display_name": "Schema", | |
"dynamic": false, | |
"info": "The schema for the Output of the model. You must pass the word JSON in the prompt. If left blank, JSON mode will be disabled. [DEPRECATED]", | |
"list": true, | |
"name": "output_schema", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_input": true, | |
"type": "dict", | |
"value": {} | |
}, | |
"seed": { | |
"_input_type": "IntInput", | |
"advanced": true, | |
"display_name": "Seed", | |
"dynamic": false, | |
"info": "The seed controls the reproducibility of the job.", | |
"list": false, | |
"name": "seed", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "int", | |
"value": 1 | |
}, | |
"stream": { | |
"_input_type": "BoolInput", | |
"advanced": false, | |
"display_name": "Stream", | |
"dynamic": false, | |
"info": "Stream the response from the model. Streaming works only in Chat.", | |
"list": false, | |
"name": "stream", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "bool", | |
"value": false | |
}, | |
"system_message": { | |
"_input_type": "MessageTextInput", | |
"advanced": false, | |
"display_name": "System Message", | |
"dynamic": false, | |
"info": "System message to pass to the model.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "system_message", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
}, | |
"temperature": { | |
"_input_type": "FloatInput", | |
"advanced": false, | |
"display_name": "Temperature", | |
"dynamic": false, | |
"info": "", | |
"list": false, | |
"name": "temperature", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "float", | |
"value": 0.1 | |
} | |
}, | |
"tool_mode": false | |
}, | |
"type": "OpenAIModel" | |
}, | |
"dragging": false, | |
"height": 630, | |
"id": "OpenAIModel-zhgF5", | |
"position": { | |
"x": 2860.2941186979524, | |
"y": 561.8661152181708 | |
}, | |
"positionAbsolute": { | |
"x": 2860.2941186979524, | |
"y": 561.8661152181708 | |
}, | |
"selected": false, | |
"type": "genericNode", | |
"width": 320 | |
}, | |
{ | |
"data": { | |
"id": "note-gBUJ9", | |
"node": { | |
"description": "# Research Agent \n\nWelcome to the Research Agent! This flow helps you conduct in-depth research on various topics using AI-powered tools and analysis.\n\n## Instructions\n1. Enter Your Research Query\n - Type your research question or topic into the Chat Input node.\n - Be specific and clear about what you want to investigate.\n\n2. Generate Research Plan\n - The system will create a focused research plan based on your query.\n - This plan includes key search queries and priorities.\n\n3. Conduct Web Search\n - The Tavily AI Search tool will perform web searches using the generated queries.\n - It focuses on finding academic and reliable sources.\n\n4. Analyze and Synthesize\n - The AI agent will review the search results and create a comprehensive synthesis.\n - The report includes an executive summary, methodology, findings, and conclusions.\n\n5. Review the Output\n - Read the final report in the Chat Output node.\n - Use this information as a starting point for further research or decision-making.\n\nRemember: You can refine your initial query for more specific results! 🔍📊", | |
"display_name": "", | |
"documentation": "", | |
"template": { | |
"backgroundColor": "emerald" | |
} | |
}, | |
"type": "note" | |
}, | |
"dragging": false, | |
"height": 765, | |
"id": "note-gBUJ9", | |
"position": { | |
"x": 471.4335708918645, | |
"y": -9.732869247334605 | |
}, | |
"positionAbsolute": { | |
"x": 471.4335708918645, | |
"y": -9.732869247334605 | |
}, | |
"resizing": false, | |
"selected": false, | |
"style": { | |
"height": 765, | |
"width": 600 | |
}, | |
"type": "noteNode", | |
"width": 600 | |
}, | |
{ | |
"data": { | |
"description": "Define the agent's instructions, then enter a task to complete using tools.", | |
"display_name": "Agent", | |
"id": "Agent-9E8IU", | |
"node": { | |
"base_classes": [ | |
"Message" | |
], | |
"beta": false, | |
"conditional_paths": [], | |
"custom_fields": {}, | |
"description": "Define the agent's instructions, then enter a task to complete using tools.", | |
"display_name": "Agent", | |
"documentation": "", | |
"edited": false, | |
"field_order": [ | |
"agent_llm", | |
"max_tokens", | |
"model_kwargs", | |
"json_mode", | |
"output_schema", | |
"model_name", | |
"openai_api_base", | |
"api_key", | |
"temperature", | |
"seed", | |
"output_parser", | |
"system_prompt", | |
"tools", | |
"input_value", | |
"handle_parsing_errors", | |
"verbose", | |
"max_iterations", | |
"agent_description", | |
"memory", | |
"sender", | |
"sender_name", | |
"n_messages", | |
"session_id", | |
"order", | |
"template", | |
"add_current_date_tool" | |
], | |
"frozen": false, | |
"icon": "bot", | |
"legacy": false, | |
"lf_version": "1.0.19.post2", | |
"metadata": {}, | |
"output_types": [], | |
"outputs": [ | |
{ | |
"cache": true, | |
"display_name": "Response", | |
"method": "message_response", | |
"name": "response", | |
"selected": "Message", | |
"types": [ | |
"Message" | |
], | |
"value": "__UNDEFINED__" | |
} | |
], | |
"pinned": false, | |
"template": { | |
"_type": "Component", | |
"add_current_date_tool": { | |
"_input_type": "BoolInput", | |
"advanced": true, | |
"display_name": "Current Date", | |
"dynamic": false, | |
"info": "If true, will add a tool to the agent that returns the current date.", | |
"list": false, | |
"name": "add_current_date_tool", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "bool", | |
"value": true | |
}, | |
"agent_description": { | |
"_input_type": "MultilineInput", | |
"advanced": true, | |
"display_name": "Agent Description", | |
"dynamic": false, | |
"info": "The description of the agent. This is only used when in Tool Mode. Defaults to 'A helpful assistant with access to the following tools:' and tools are added dynamically.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"multiline": true, | |
"name": "agent_description", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "A helpful assistant with access to the following tools:" | |
}, | |
"agent_llm": { | |
"_input_type": "DropdownInput", | |
"advanced": false, | |
"combobox": false, | |
"display_name": "Model Provider", | |
"dynamic": false, | |
"info": "The provider of the language model that the agent will use to generate responses.", | |
"input_types": [], | |
"name": "agent_llm", | |
"options": [ | |
"Amazon Bedrock", | |
"Anthropic", | |
"Azure OpenAI", | |
"Groq", | |
"NVIDIA", | |
"OpenAI", | |
"Custom" | |
], | |
"placeholder": "", | |
"real_time_refresh": true, | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "OpenAI" | |
}, | |
"api_key": { | |
"_input_type": "SecretStrInput", | |
"advanced": false, | |
"display_name": "OpenAI API Key", | |
"dynamic": false, | |
"info": "The OpenAI API Key to use for the OpenAI model.", | |
"input_types": [ | |
"Message" | |
], | |
"load_from_db": false, | |
"name": "api_key", | |
"password": true, | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"type": "str", | |
"value": "OPENAI_API_KEY" | |
}, | |
"code": { | |
"advanced": true, | |
"dynamic": true, | |
"fileTypes": [], | |
"file_path": "", | |
"info": "", | |
"list": false, | |
"load_from_db": false, | |
"multiline": true, | |
"name": "code", | |
"password": false, | |
"placeholder": "", | |
"required": true, | |
"show": true, | |
"title_case": false, | |
"type": "code", | |
"value": "from langchain_core.tools import StructuredTool\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_PROVIDERS_DICT,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import (\n ToolCallingAgentComponent,\n)\nfrom langflow.io import BoolInput, DropdownInput, MultilineInput, Output\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*sorted(MODEL_PROVIDERS_DICT.keys()), \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n ),\n *MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"],\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n *LCToolsAgentComponent._base_inputs,\n *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [Output(name=\"response\", display_name=\"Response\", method=\"message_response\")]\n\n async def message_response(self) -> Message:\n llm_model, display_name = self.get_llm()\n self.model_name = get_model_name(llm_model, display_name=display_name)\n if llm_model is None:\n msg = \"No language model selected\"\n raise ValueError(msg)\n self.chat_history = await self.get_memory_data()\n\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n # Convert CurrentDateComponent to a StructuredTool\n current_date_tool = CurrentDateComponent().to_toolkit()[0]\n if isinstance(current_date_tool, StructuredTool):\n self.tools.append(current_date_tool)\n else:\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise ValueError(msg)\n\n if not self.tools:\n msg = \"Tools are required to run the agent.\"\n raise ValueError(msg)\n self.set(\n llm=llm_model,\n tools=self.tools,\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n return await self.run_agent(agent)\n\n async def get_memory_data(self):\n memory_kwargs = {\n component_input.name: getattr(self, f\"{component_input.name}\") for component_input in self.memory_inputs\n }\n\n return await MemoryComponent().set(**memory_kwargs).retrieve_messages()\n\n def get_llm(self):\n if isinstance(self.agent_llm, str):\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n return (\n self._build_llm_model(component_class, inputs, prefix),\n display_name,\n )\n except Exception as e:\n msg = f\"Error building {self.agent_llm} language model\"\n raise ValueError(msg) from e\n return self.agent_llm, None\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {input_.name: getattr(self, f\"{prefix}{input_.name}\") for input_ in inputs}\n return component.set(**model_kwargs).build_model()\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n def update_build_config(self, build_config: dotdict, field_value: str, field_name: str | None = None) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name == \"agent_llm\":\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = component_class.update_build_config(build_config, field_value, field_name)\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS_DICT.keys()), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if isinstance(self.agent_llm, str) and self.agent_llm in MODEL_PROVIDERS_DICT:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = component_class.update_build_config(build_config, field_value, field_name)\n\n return build_config\n" | |
}, | |
"handle_parsing_errors": { | |
"_input_type": "BoolInput", | |
"advanced": true, | |
"display_name": "Handle Parse Errors", | |
"dynamic": false, | |
"info": "Should the Agent fix errors when reading user input for better processing?", | |
"list": false, | |
"name": "handle_parsing_errors", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "bool", | |
"value": true | |
}, | |
"input_value": { | |
"_input_type": "MessageTextInput", | |
"advanced": false, | |
"display_name": "Input", | |
"dynamic": false, | |
"info": "The input provided by the user for the agent to process.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "input_value", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": true, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
}, | |
"json_mode": { | |
"_input_type": "BoolInput", | |
"advanced": true, | |
"display_name": "JSON Mode", | |
"dynamic": false, | |
"info": "If True, it will output JSON regardless of passing a schema.", | |
"list": false, | |
"name": "json_mode", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "bool", | |
"value": false | |
}, | |
"max_iterations": { | |
"_input_type": "IntInput", | |
"advanced": true, | |
"display_name": "Max Iterations", | |
"dynamic": false, | |
"info": "The maximum number of attempts the agent can make to complete its task before it stops.", | |
"list": false, | |
"name": "max_iterations", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "int", | |
"value": 15 | |
}, | |
"max_tokens": { | |
"_input_type": "IntInput", | |
"advanced": true, | |
"display_name": "Max Tokens", | |
"dynamic": false, | |
"info": "The maximum number of tokens to generate. Set to 0 for unlimited tokens.", | |
"list": false, | |
"name": "max_tokens", | |
"placeholder": "", | |
"range_spec": { | |
"max": 128000, | |
"min": 0, | |
"step": 0.1, | |
"step_type": "float" | |
}, | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "int", | |
"value": "" | |
}, | |
"memory": { | |
"_input_type": "HandleInput", | |
"advanced": true, | |
"display_name": "External Memory", | |
"dynamic": false, | |
"info": "Retrieve messages from an external memory. If empty, it will use the Langflow tables.", | |
"input_types": [ | |
"BaseChatMessageHistory" | |
], | |
"list": false, | |
"name": "memory", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "other", | |
"value": "" | |
}, | |
"model_kwargs": { | |
"_input_type": "DictInput", | |
"advanced": true, | |
"display_name": "Model Kwargs", | |
"dynamic": false, | |
"info": "Additional keyword arguments to pass to the model.", | |
"list": false, | |
"name": "model_kwargs", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_input": true, | |
"type": "dict", | |
"value": {} | |
}, | |
"model_name": { | |
"_input_type": "DropdownInput", | |
"advanced": false, | |
"combobox": false, | |
"display_name": "Model Name", | |
"dynamic": false, | |
"info": "", | |
"name": "model_name", | |
"options": [ | |
"gpt-4o-mini", | |
"gpt-4o", | |
"gpt-4-turbo", | |
"gpt-4-turbo-preview", | |
"gpt-4", | |
"gpt-3.5-turbo", | |
"gpt-3.5-turbo-0125" | |
], | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "gpt-4o-mini" | |
}, | |
"n_messages": { | |
"_input_type": "IntInput", | |
"advanced": true, | |
"display_name": "Number of Messages", | |
"dynamic": false, | |
"info": "Number of messages to retrieve.", | |
"list": false, | |
"name": "n_messages", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "int", | |
"value": 100 | |
}, | |
"openai_api_base": { | |
"_input_type": "StrInput", | |
"advanced": true, | |
"display_name": "OpenAI API Base", | |
"dynamic": false, | |
"info": "The base URL of the OpenAI API. Defaults to https://api.openai.com/v1. You can change this to use other APIs like JinaChat, LocalAI and Prem.", | |
"list": false, | |
"load_from_db": false, | |
"name": "openai_api_base", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
}, | |
"order": { | |
"_input_type": "DropdownInput", | |
"advanced": true, | |
"combobox": false, | |
"display_name": "Order", | |
"dynamic": false, | |
"info": "Order of the messages.", | |
"name": "order", | |
"options": [ | |
"Ascending", | |
"Descending" | |
], | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "Ascending" | |
}, | |
"output_parser": { | |
"_input_type": "HandleInput", | |
"advanced": true, | |
"display_name": "Output Parser", | |
"dynamic": false, | |
"info": "The parser to use to parse the output of the model", | |
"input_types": [ | |
"OutputParser" | |
], | |
"list": false, | |
"name": "output_parser", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "other", | |
"value": "" | |
}, | |
"output_schema": { | |
"_input_type": "DictInput", | |
"advanced": true, | |
"display_name": "Schema", | |
"dynamic": false, | |
"info": "The schema for the Output of the model. You must pass the word JSON in the prompt. If left blank, JSON mode will be disabled. [DEPRECATED]", | |
"list": true, | |
"name": "output_schema", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_input": true, | |
"type": "dict", | |
"value": {} | |
}, | |
"seed": { | |
"_input_type": "IntInput", | |
"advanced": true, | |
"display_name": "Seed", | |
"dynamic": false, | |
"info": "The seed controls the reproducibility of the job.", | |
"list": false, | |
"name": "seed", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "int", | |
"value": 1 | |
}, | |
"sender": { | |
"_input_type": "DropdownInput", | |
"advanced": true, | |
"combobox": false, | |
"display_name": "Sender Type", | |
"dynamic": false, | |
"info": "Filter by sender type.", | |
"name": "sender", | |
"options": [ | |
"Machine", | |
"User", | |
"Machine and User" | |
], | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "Machine and User" | |
}, | |
"sender_name": { | |
"_input_type": "MessageTextInput", | |
"advanced": true, | |
"display_name": "Sender Name", | |
"dynamic": false, | |
"info": "Filter by sender name.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "sender_name", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
}, | |
"session_id": { | |
"_input_type": "MessageTextInput", | |
"advanced": true, | |
"display_name": "Session ID", | |
"dynamic": false, | |
"info": "The session ID of the chat. If empty, the current session ID parameter will be used.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "session_id", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
}, | |
"system_prompt": { | |
"_input_type": "MultilineInput", | |
"advanced": false, | |
"display_name": "Agent Instructions", | |
"dynamic": false, | |
"info": "System Prompt: Initial instructions and context provided to guide the agent's behavior.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"multiline": true, | |
"name": "system_prompt", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "You are a research analyst with access to Tavily Search." | |
}, | |
"temperature": { | |
"_input_type": "FloatInput", | |
"advanced": true, | |
"display_name": "Temperature", | |
"dynamic": false, | |
"info": "", | |
"list": false, | |
"name": "temperature", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "float", | |
"value": 0.1 | |
}, | |
"template": { | |
"_input_type": "MultilineInput", | |
"advanced": true, | |
"display_name": "Template", | |
"dynamic": false, | |
"info": "The template to use for formatting the data. It can contain the keys {text}, {sender} or any other key in the message data.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"multiline": true, | |
"name": "template", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "{sender_name}: {text}" | |
}, | |
"tools": { | |
"_input_type": "HandleInput", | |
"advanced": false, | |
"display_name": "Tools", | |
"dynamic": false, | |
"info": "These are the tools that the agent can use to help with tasks.", | |
"input_types": [ | |
"Tool", | |
"BaseTool", | |
"StructuredTool" | |
], | |
"list": true, | |
"name": "tools", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "other", | |
"value": "" | |
}, | |
"verbose": { | |
"_input_type": "BoolInput", | |
"advanced": true, | |
"display_name": "Verbose", | |
"dynamic": false, | |
"info": "", | |
"list": false, | |
"name": "verbose", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"trace_as_metadata": true, | |
"type": "bool", | |
"value": true | |
} | |
}, | |
"tool_mode": false | |
}, | |
"type": "Agent" | |
}, | |
"dragging": false, | |
"height": 658, | |
"id": "Agent-9E8IU", | |
"position": { | |
"x": 2156.60686936856, | |
"y": 439.4579572266066 | |
}, | |
"positionAbsolute": { | |
"x": 2156.60686936856, | |
"y": 439.4579572266066 | |
}, | |
"selected": true, | |
"type": "genericNode", | |
"width": 320 | |
}, | |
{ | |
"data": { | |
"description": "Create a prompt template with dynamic variables.", | |
"display_name": "Prompt", | |
"id": "Prompt-T4lL6", | |
"node": { | |
"base_classes": [ | |
"Message" | |
], | |
"beta": false, | |
"conditional_paths": [], | |
"custom_fields": { | |
"template": [] | |
}, | |
"description": "Create a prompt template with dynamic variables.", | |
"display_name": "Prompt", | |
"documentation": "", | |
"edited": false, | |
"field_order": [ | |
"template" | |
], | |
"frozen": false, | |
"icon": "prompts", | |
"legacy": false, | |
"lf_version": "1.0.19.post2", | |
"metadata": {}, | |
"output_types": [], | |
"outputs": [ | |
{ | |
"cache": true, | |
"display_name": "Prompt Message", | |
"method": "build_prompt", | |
"name": "prompt", | |
"selected": "Message", | |
"types": [ | |
"Message" | |
], | |
"value": "__UNDEFINED__" | |
} | |
], | |
"pinned": false, | |
"template": { | |
"_type": "Component", | |
"code": { | |
"advanced": true, | |
"dynamic": true, | |
"fileTypes": [], | |
"file_path": "", | |
"info": "", | |
"list": false, | |
"load_from_db": false, | |
"multiline": true, | |
"name": "code", | |
"password": false, | |
"placeholder": "", | |
"required": true, | |
"show": true, | |
"title_case": false, | |
"type": "code", | |
"value": "from langflow.base.prompts.api_utils import process_prompt_template\nfrom langflow.custom import Component\nfrom langflow.inputs.inputs import DefaultPromptField\nfrom langflow.io import MessageTextInput, Output, PromptInput\nfrom langflow.schema.message import Message\nfrom langflow.template.utils import update_template_values\n\n\nclass PromptComponent(Component):\n display_name: str = \"Prompt\"\n description: str = \"Create a prompt template with dynamic variables.\"\n icon = \"prompts\"\n trace_type = \"prompt\"\n name = \"Prompt\"\n\n inputs = [\n PromptInput(name=\"template\", display_name=\"Template\"),\n MessageTextInput(\n name=\"tool_placeholder\",\n display_name=\"Tool Placeholder\",\n tool_mode=True,\n advanced=True,\n info=\"A placeholder input for tool mode.\",\n ),\n ]\n\n outputs = [\n Output(display_name=\"Prompt Message\", name=\"prompt\", method=\"build_prompt\"),\n ]\n\n async def build_prompt(self) -> Message:\n prompt = Message.from_template(**self._attributes)\n self.status = prompt.text\n return prompt\n\n def _update_template(self, frontend_node: dict):\n prompt_template = frontend_node[\"template\"][\"template\"][\"value\"]\n custom_fields = frontend_node[\"custom_fields\"]\n frontend_node_template = frontend_node[\"template\"]\n _ = process_prompt_template(\n template=prompt_template,\n name=\"template\",\n custom_fields=custom_fields,\n frontend_node_template=frontend_node_template,\n )\n return frontend_node\n\n def post_code_processing(self, new_frontend_node: dict, current_frontend_node: dict):\n \"\"\"This function is called after the code validation is done.\"\"\"\n frontend_node = super().post_code_processing(new_frontend_node, current_frontend_node)\n template = frontend_node[\"template\"][\"template\"][\"value\"]\n # Kept it duplicated for backwards compatibility\n _ = process_prompt_template(\n template=template,\n name=\"template\",\n custom_fields=frontend_node[\"custom_fields\"],\n frontend_node_template=frontend_node[\"template\"],\n )\n # Now that template is updated, we need to grab any values that were set in the current_frontend_node\n # and update the frontend_node with those values\n update_template_values(new_template=frontend_node, previous_template=current_frontend_node[\"template\"])\n return frontend_node\n\n def _get_fallback_input(self, **kwargs):\n return DefaultPromptField(**kwargs)\n" | |
}, | |
"template": { | |
"_input_type": "PromptInput", | |
"advanced": false, | |
"display_name": "Template", | |
"dynamic": false, | |
"info": "", | |
"list": false, | |
"load_from_db": false, | |
"name": "template", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_input": true, | |
"type": "prompt", | |
"value": "You are an expert research assistant.\n\nCreate a focused research plan that will guide our search.\n\nFormat your response exactly as:\n\nRESEARCH OBJECTIVE:\n[Clear statement of research goal]\n\nKEY SEARCH QUERIES:\n1. [Primary academic search query]\n2. [Secondary search query]\n3. [Alternative search approach]\n\nSEARCH PRIORITIES:\n- [What types of sources to focus on]\n- [Key aspects to investigate]\n- [Specific areas to explore]" | |
}, | |
"tool_placeholder": { | |
"_input_type": "MessageTextInput", | |
"advanced": true, | |
"display_name": "Tool Placeholder", | |
"dynamic": false, | |
"info": "A placeholder input for tool mode.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "tool_placeholder", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": true, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
} | |
}, | |
"tool_mode": false | |
}, | |
"type": "Prompt" | |
}, | |
"dragging": false, | |
"height": 260, | |
"id": "Prompt-T4lL6", | |
"position": { | |
"x": 1102.6079408836365, | |
"y": 550.2148817052229 | |
}, | |
"positionAbsolute": { | |
"x": 1102.6079408836365, | |
"y": 550.2148817052229 | |
}, | |
"selected": false, | |
"type": "genericNode", | |
"width": 320 | |
}, | |
{ | |
"data": { | |
"description": "Create a prompt template with dynamic variables.", | |
"display_name": "Prompt", | |
"id": "Prompt-f4xQ5", | |
"node": { | |
"base_classes": [ | |
"Message" | |
], | |
"beta": false, | |
"conditional_paths": [], | |
"custom_fields": { | |
"template": [] | |
}, | |
"description": "Create a prompt template with dynamic variables.", | |
"display_name": "Prompt", | |
"documentation": "", | |
"edited": false, | |
"field_order": [ | |
"template" | |
], | |
"frozen": false, | |
"icon": "prompts", | |
"legacy": false, | |
"lf_version": "1.0.19.post2", | |
"metadata": {}, | |
"output_types": [], | |
"outputs": [ | |
{ | |
"cache": true, | |
"display_name": "Prompt Message", | |
"method": "build_prompt", | |
"name": "prompt", | |
"selected": "Message", | |
"types": [ | |
"Message" | |
], | |
"value": "__UNDEFINED__" | |
} | |
], | |
"pinned": false, | |
"template": { | |
"_type": "Component", | |
"code": { | |
"advanced": true, | |
"dynamic": true, | |
"fileTypes": [], | |
"file_path": "", | |
"info": "", | |
"list": false, | |
"load_from_db": false, | |
"multiline": true, | |
"name": "code", | |
"password": false, | |
"placeholder": "", | |
"required": true, | |
"show": true, | |
"title_case": false, | |
"type": "code", | |
"value": "from langflow.base.prompts.api_utils import process_prompt_template\nfrom langflow.custom import Component\nfrom langflow.inputs.inputs import DefaultPromptField\nfrom langflow.io import MessageTextInput, Output, PromptInput\nfrom langflow.schema.message import Message\nfrom langflow.template.utils import update_template_values\n\n\nclass PromptComponent(Component):\n display_name: str = \"Prompt\"\n description: str = \"Create a prompt template with dynamic variables.\"\n icon = \"prompts\"\n trace_type = \"prompt\"\n name = \"Prompt\"\n\n inputs = [\n PromptInput(name=\"template\", display_name=\"Template\"),\n MessageTextInput(\n name=\"tool_placeholder\",\n display_name=\"Tool Placeholder\",\n tool_mode=True,\n advanced=True,\n info=\"A placeholder input for tool mode.\",\n ),\n ]\n\n outputs = [\n Output(display_name=\"Prompt Message\", name=\"prompt\", method=\"build_prompt\"),\n ]\n\n async def build_prompt(self) -> Message:\n prompt = Message.from_template(**self._attributes)\n self.status = prompt.text\n return prompt\n\n def _update_template(self, frontend_node: dict):\n prompt_template = frontend_node[\"template\"][\"template\"][\"value\"]\n custom_fields = frontend_node[\"custom_fields\"]\n frontend_node_template = frontend_node[\"template\"]\n _ = process_prompt_template(\n template=prompt_template,\n name=\"template\",\n custom_fields=custom_fields,\n frontend_node_template=frontend_node_template,\n )\n return frontend_node\n\n def post_code_processing(self, new_frontend_node: dict, current_frontend_node: dict):\n \"\"\"This function is called after the code validation is done.\"\"\"\n frontend_node = super().post_code_processing(new_frontend_node, current_frontend_node)\n template = frontend_node[\"template\"][\"template\"][\"value\"]\n # Kept it duplicated for backwards compatibility\n _ = process_prompt_template(\n template=template,\n name=\"template\",\n custom_fields=frontend_node[\"custom_fields\"],\n frontend_node_template=frontend_node[\"template\"],\n )\n # Now that template is updated, we need to grab any values that were set in the current_frontend_node\n # and update the frontend_node with those values\n update_template_values(new_template=frontend_node, previous_template=current_frontend_node[\"template\"])\n return frontend_node\n\n def _get_fallback_input(self, **kwargs):\n return DefaultPromptField(**kwargs)\n" | |
}, | |
"template": { | |
"_input_type": "PromptInput", | |
"advanced": false, | |
"display_name": "Template", | |
"dynamic": false, | |
"info": "", | |
"list": false, | |
"load_from_db": false, | |
"name": "template", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": false, | |
"trace_as_input": true, | |
"type": "prompt", | |
"value": "You are a research synthesis expert.\n\nCreate a comprehensive synthesis and report of our findings.\n\nFormat your response as:\n\nEXECUTIVE SUMMARY:\n[Key findings and implications]\n\nMETHODOLOGY:\n- Search Strategy Used\n- Sources Analyzed\n- Quality Assessment\n\nFINDINGS & ANALYSIS:\n[Detailed discussion of discoveries]\n\nCONCLUSIONS:\n[Main takeaways and insights]\n\nFUTURE DIRECTIONS:\n[Suggested next steps]\n\nIMPORTANT: For each major point or finding, include the relevant source link in square brackets at the end of the sentence or paragraph. For example: \"Harvard has developed a solid-state battery that charges in minutes. [Source: https://example.com/article]\"\n" | |
}, | |
"tool_placeholder": { | |
"_input_type": "MessageTextInput", | |
"advanced": true, | |
"display_name": "Tool Placeholder", | |
"dynamic": false, | |
"info": "A placeholder input for tool mode.", | |
"input_types": [ | |
"Message" | |
], | |
"list": false, | |
"load_from_db": false, | |
"name": "tool_placeholder", | |
"placeholder": "", | |
"required": false, | |
"show": true, | |
"title_case": false, | |
"tool_mode": true, | |
"trace_as_input": true, | |
"trace_as_metadata": true, | |
"type": "str", | |
"value": "" | |
} | |
}, | |
"tool_mode": false | |
}, | |
"type": "Prompt" | |
}, | |
"dragging": false, | |
"height": 260, | |
"id": "Prompt-f4xQ5", | |
"position": { | |
"x": 2498.9482347755306, | |
"y": 889.7491088138673 | |
}, | |
"positionAbsolute": { | |
"x": 2498.9482347755306, | |
"y": 889.7491088138673 | |
}, | |
"selected": false, | |
"type": "genericNode", | |
"width": 320 | |
}, | |
{ | |
"data": { | |
"id": "note-86Le6", | |
"node": { | |
"description": "# 🔑 Tavily AI Search Needs API Key\n\nYou can get 1000 searches/month free [here](https://tavily.com/) ", | |
"display_name": "", | |
"documentation": "", | |
"template": { | |
"backgroundColor": "lime" | |
} | |
}, | |
"type": "note" | |
}, | |
"dragging": false, | |
"height": 325, | |
"id": "note-86Le6", | |
"position": { | |
"x": 1797.5781951055678, | |
"y": 206.30509875543274 | |
}, | |
"positionAbsolute": { | |
"x": 1797.5781951055678, | |
"y": 206.30509875543274 | |
}, | |
"selected": false, | |
"type": "noteNode", | |
"width": 325 | |
} | |
], | |
"viewport": { | |
"x": -1627.3021649072248, | |
"y": -234.56097308583958, | |
"zoom": 0.9538000505518524 | |
} | |
}, | |
"description": "starterProjects.researchAgent.description", | |
"endpoint_name": null, | |
"gradient": "5", | |
"icon": "TextSearchIcon", | |
"id": "67b16861-1344-465b-963a-c1c338623438", | |
"is_component": false, | |
"last_tested_version": "1.0.19.post2", | |
"name": "starterProjects.researchAgent.name", | |
"tags": [ | |
"assistants", | |
"agents" | |
] | |
} |